SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q7Z6Z7 from www.uniprot.org...

The NucPred score for your sequence is 1.00 (see score help below)

   1  MKVDRTKLKKTPTEAPADCRALIDKLKVCNDEQLLLELQQIKTWNIGKCE    50
51 LYHWVDLLDRFDGILADAGQTVENMSWMLVCDRPEREQLKMLLLAVLNFT 100
101 ALLIEYSFSRHLYSSIEHLTTLLASSDMQVVLAVLNLLYVFSKRSNYITR 150
151 LGSDKRTPLLTRLQHLAESWGGKENGFGLAECCRDLHMMKYPPSATTLHF 200
201 EFYADPGAEVKIEKRTTSNTLHYIHIEQLDKISESPSEIMESLTKMYSIP 250
251 KDKQMLLFTHIRLAHGFSNHRKRLQAVQARLHAISILVYSNALQESANSI 300
301 LYNGLIEELVDVLQITDKQLMEIKAASLRTLTSIVHLERTPKLSSIIDCT 350
351 GTASYHGFLPVLVRNCIQAMIDPSMDPYPHQFATALFSFLYHLASYDAGG 400
401 EALVSCGMMEALLKVIKFLGDEQDQITFVTRAVRVVDLITNLDMAAFQSH 450
451 SGLSIFIYRLEHEVDLCRKECPFVIKPKIQRPNTTQEGEEMETDMDGVQC 500
501 IPQRAALLKSMLNFLKKAIQDPAFSDGIRHVMDGSLPTSLKHIISNAEYY 550
551 GPSLFLLATEVVTVFVFQEPSLLSSLQDNGLTDVMLHALLIKDVPATREV 600
601 LGSLPNVFSALCLNARGLQSFVQCQPFERLFKVLLSPDYLPAMRRRRSSD 650
651 PLGDTASNLGSAVDELMRHQPTLKTDATTAIIKLLEEICNLGRDPKYICQ 700
701 KPSIQKADGTATAPPPRSNHAAEEASSEDEEEEEVQAMQSFNSTQQNETE 750
751 PNQQVVGTEERIPIPLMDYILNVMKFVESILSNNTTDDHCQEFVNQKGLL 800
801 PLVTILGLPNLPIDFPTSAACQAVAGVCKSILTLSHEPKVLQEGLLQLDS 850
851 ILSSLEPLHRPIESPGGSVLLRELACAGNVADATLSAQATPLLHALTAAH 900
901 AYIMMFVHTCRVGQSEIRSISVNQWGSQLGLSVLSKLSQLYCSLVWESTV 950
951 LLSLCTPNSLPSGCEFGQADMQKLVPKDEKAGTTQGGKRSDGEQDGAAGS 1000
1001 MDASTQGLLEGIGLDGDTLAPMETDEPTASDSKGKSKITPAMAARIKQIK 1050
1051 PLLSASSRLGRALAELFGLLVKLCVGSPVRQRRSHHAASTTTAPTPAARS 1100
1101 TASALTKLLTKGLSWQPPPYTPTPRFRLTFFICSVGFTSPMLFDERKYPY 1150
1151 HLMLQKFLCSGGHNALFETFNWALSMGGKVPVSEGLEHSDLPDGTGEFLD 1200
1201 AWLMLVEKMVNPTTVLESPHSLPAKLPGGVQNFPQFSALRFLVVTQKAAF 1250
1251 TCIKNLWNRKPLKVYGGRMAESMLAILCHILRGEPVIRERLSKEKEGSRG 1300
1301 EEDTGQEEGGSRREPQVNQQQLQQLMDMGFTREHAMEALLNTSTMEQATE 1350
1351 YLLTHPPPIMGGVVRDLSMSEEDQMMRAIAMSLGQDIPMDQRAESPEEVA 1400
1401 CRKEEEERKAREKQEEEEAKCLEKFQDADPLEQDELHTFTDTMLPGCFHL 1450
1451 LDELPDTVYRVCDLIMTAIKRNGADYRDMILKQVVNQVWEAADVLIKAAL 1500
1501 PLTTSDTKTVSEWISQMATLPQASNLATRILLLTLLFEELKLPCAWVVES 1550
1551 SGILNVLIKLLEVVQPCLQAAKEQKEVQTPKWITPVLLLIDFYEKTAISS 1600
1601 KRRAQMTKYLQSNSNNWRWFDDRSGRWCSYSASNNSTIDSAWKSGETSVR 1650
1651 FTAGRRRYTVQFTTMVQVNEETGNRRPVMLTLLRVPRLNKNSKNSNGQEL 1700
1701 EKTLEESKEMDIKRKENKGNDTPLALESTNTEKETSLEETKIGEILIQGL 1750
1751 TEDMVTVLIRACVSMLGVPVDPDTLHATLRLCLRLTRDHKYAMMFAELKS 1800
1801 TRMILNLTQSSGFNGFTPLVTLLLRHIIEDPCTLRHTMEKVVRSAATSGA 1850
1851 GSTTSGVVSGSLGSREINYILRVLGPAACRNPDIFTEVANCCIRIALPAP 1900
1901 RGSGTASDDEFENLRIKGPNAVQLVKTTPLKPSPLPVIPDTIKEVIYDML 1950
1951 NALAAYHAPEEADKSDPKPGVMTQEVGQLLQDMGDDVYQQYRSLTRQSSD 2000
2001 FDTQSGFSINSQVFAADGASTETSASGTSQGEASTPEESRDGKKDKEGDR 2050
2051 ASEEGKQKGKGSKPLMPTSTILRLLAELVRSYVGIATLIANYSYTVGQSE 2100
2101 LIKEDCSVLAFVLDHLLPHTQNAEDKDTPALARLFLASLAAAGSGTDAQV 2150
2151 ALVNEVKAALGRALAMAESTEKHARLQAVMCIISTIMESCPSTSSFYSSA 2200
2201 TAKTQHNGMNNIIRLFLKKGLVNDLARVPHSLDLSSPNMANTVNAALKPL 2250
2251 ETLSRIVNQPSSLFGSKSASSKNKSEQDAQGASQDSSSNQQDPGEPGEAE 2300
2301 VQEEDHDVTQTEVADGDIMDGEAETDSVVIAGQPEVLSSQEMQVENELED 2350
2351 LIDELLERDGGSGNSTIIVSRSGEDESQEDVLMDEAPSNLSQASTLQANR 2400
2401 EDSMNILDPEDEEEHTQEEDSSGSNEDEDDSQDEEEEEEEDEEDDQEDDE 2450
2451 GEEGDEDDDDDGSEMELDEDYPDMNASPLVRFERFDREDDLIIEFDNMFS 2500
2501 SATDIPPSPGNIPTTHPLMVRHADHSSLTLGSGSSTTRLTQGIGRSQRTL 2550
2551 RQLTANTGHTIHVHYPGNRQPNPPLILQRLLGPSAAADILQLSSSLPLQS 2600
2601 RGRARLLVGNDDVHIIARSDDELLDDFFHDQSTATSQAGTLSSIPTALTR 2650
2651 WTEECKVLDAESMHDCVSVVKVSIVNHLEFLRDEELEERREKRRKQLAEE 2700
2701 ETKITDKGKEDKENRDQSAQCTASKSNDSTEQNLSDGTPMPDSYPTTPSS 2750
2751 TDAATSESKETLGTLQSSQQQPTLPTPPALGEVPQELQSPAGEGGSSTQL 2800
2801 LMPVEPEELGPTRPSGEAETTQMELSPAPTITSLSPERAEDSDALTAVSS 2850
2851 QLEGSPMDTSSLASCTLEEAVGDTSAAGSSEQPRAGSSTPGDAPPAVAEV 2900
2901 QGRSDGSGESAQPPEDSSPPASSESSSTRDSAVAISGADSRGILEEPLPS 2950
2951 TSSEEEDPLAGISLPEGVDPSFLAALPDDIRREVLQNQLGIRPPTRTAPS 3000
3001 TNSSAPAVVGNPGVTEVSPEFLAALPPAIQEEVLAQQRAEQQRRELAQNA 3050
3051 SSDTPMDPVTFIQTLPSDLRRSVLEDMEDSVLAVMPPDIAAEAQALRREQ 3100
3101 EARQRQLMHERLFGHSSTSALSAILRSPAFTSRLSGNRGVQYTRLAVQRG 3150
3151 GTFQMGGSSSHNRPSGSNVDTLLRLRGRLLLDHEALSCLLVLLFVDEPKL 3200
3201 NTSRLHRVLRNLCYHAQTRHWVIRSLLSILQRSSESELCIETPKLTTSEE 3250
3251 KGKKSSKSCGSSSHENRPLDLLHKMESKSSNQLSWLSVSMDAALGCRTNI 3300
3301 FQIQRSGGRKHTEKHASGGSTVHIHPQAAPVVCRHVLDTLIQLAKVFPSH 3350
3351 FTQQRTKETNCESDRERGNKACSPCSSQSSSSGICTDFWDLLVKLDNMNV 3400
3401 SRKGKNSVKSVPVSAGGEGETSPYSLEASPLGQLMNMLSHPVIRRSSLLT 3450
3451 EKLLRLLSLISIALPENKVSEAQANSGSGASSTTTATSTTSTTTTTAAST 3500
3501 TPTPPTAPTPVTSAPALVAATAISTIVVAASTTVTTPTTATTTVSISPTT 3550
3551 KGSKSPAKVSDGGSSSTDFKMVSSGLTENQLQLSVEVLTSHSCSEEGLED 3600
3601 AANVLLQLSRGDSGTRDTVLKLLLNGARHLGYTLCKQIGTLLAELREYNL 3650
3651 EQQRRAQCETLSPDGLPEEQPQTTKLKGKMQSRFDMAENVVIVASQKRPL 3700
3701 GGRELQLPSMSMLTSKTSTQKFFLRVLQVIIQLRDDTRRANKKAKQTGRL 3750
3751 GSSGLGSASSIQAAVRQLEAEADAIIQMVREGQRARRQQQAATSESSQSE 3800
3801 ASVRREESPMDVDQPSPSAQDTQSIASDGTPQGEKEKEERPPELPLLSEQ 3850
3851 LSLDELWDMLGECLKELEESHDQHAVLVLQPAVEAFFLVHATERESKPPV 3900
3901 RDTRESQLAHIKDEPPPLSPAPLTPATPSSLDPFFSREPSSMHISSSLPP 3950
3951 DTQKFLRFAETHRTVLNQILRQSTTHLADGPFAVLVDYIRVLDFDVKRKY 4000
4001 FRQELERLDEGLRKEDMAVHVRRDHVFEDSYRELHRKSPEEMKNRLYIVF 4050
4051 EGEEGQDAGGLLREWYMIISREMFNPMYALFRTSPGDRVTYTINPSSHCN 4100
4101 PNHLSYFKFVGRIVAKAVYDNRLLECYFTRSFYKHILGKSVRYTDMESED 4150
4151 YHFYQGLVYLLENDVSTLGYDLTFSTEVQEFGVCEVRDLKPNGANILVTE 4200
4201 ENKKEYVHLVCQMRMTGAIRKQLAAFLEGFYEIIPKRLISIFTEQELELL 4250
4251 ISGLPTIDIDDLKSNTEYHKYQSNSIQIQWFWRALRSFDQADRAKFLQFV 4300
4301 TGTSKVPLQGFAALEGMNGIQKFQIHRDDRSTDRLPSAHTCFNQLDLPAY 4350
4351 ESFEKLRHMLLLAIQECSEGFGLA 4374

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.