 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q7ZUV7 from www.uniprot.org...
The NucPred score for your sequence is 0.82 (see score help below)
1 MPVVWPTLLDLSRDECKRILRKLELEAYAGVISALRAQGDLTKDKKELLG 50
51 ELTRVLSISTERHRAEVRRAVNDERLTTIAHHMSGPNSSSEWSIEGRRLV 100
101 PLMPRLVPQTAFTVMANAVANATAHQNASLPLPAETANKEVVVCYSYTST 150
151 TSTPPSASAPSSSSAAVKSPRPASPASNVVVLPSGSTVYVKSVSCSDEDE 200
201 KPRKRRRTSSSSSSPVLLKEVPKVAVTAPGPKTITLPVSGGPKISNLMQS 250
251 IANSLPPHMSPVKITFTKPSTQTTNTTTQKVIIVTTSPSSNFVPNILSKS 300
301 HNYAAVSKLVSSAALTASSQKQTMVISAGGSSVAPGPGPVAVTTVVSSTP 350
351 SVVMSTVAQAGSAAVKVASTRLPSPKALIGSPSQILQIPKAQQAVLQSAA 400
401 PKALQGSISTAQSTALAAAGPGAKPTIQIKQESGVKIITQQMQPSKILPK 450
451 PSSAALPSSSSAPIMVVSSNGAIMTTKLVSTPTGSASTYTRPTVSPMGTR 500
501 VATSPAGATYVKTTSGSIITVVPKALATLGGKIITTSMVSGTTTKITTIP 550
551 MTSKPNVIVVQKTTGKGTTIQGLPGKNVVTTLLNAGGEKTLQAIPGAKPA 600
601 IITASRPITKMIVTQPKSLGAGVQPSTTTKIIPTKIVYGQQGKTQVLIKP 650
651 KPMAFQTAVVSEQTRQLVSETLQQVNRSAENNTTSTHTSAAAAGLENRDD 700
701 THTYTEGSPVPSDSTHDAPPVVHLISSRGQEWAEQEVSVESSPALIYQEL 750
751 TAESQSATSTIKALLELQQTSVKEKSEAKPRQHTIDLSQMAVPIPVSAEQ 800
801 RESPEPSGQSAAESDAHTEFIPIGKVSKAAEVSASSTPGQSASAVSAAPH 850
851 VVKISTAAVTTQQVEAQVKPQQEQVLVEECELEGDTLDPQTGLFYRSSPQ 900
901 QQLSRVCEAASSSSSSSSSSSRRAEPPLTVKILTHRSSSSAPATAASANT 950
951 PHTPQLPRLQQAPTTHNRPNTHTQLSQPPPLQAHHPVGSSKTSSGAQVQQ 1000
1001 PIITQGATVTKITFGAPHVPRAPVSSSSSSEAALKLQAESSSEKPSVPDI 1050
1051 LKISMMEAEIDPGAEPMLVDSSSDCGPLTKAPAGPSLISSSKQTLAHGPF 1100
1101 SRKSKELDIIQVIPQYSIMPDSSQSNVVVEPSGFLEISDYTSQRLDEEQA 1150
1151 MEQEVDSSNDEGAAASPSADQSQ 1173
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.