SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q80TP3 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MTSIHFVVHPLPGTEDQLNDRLREVSEKLNKYNLNSHPPLNVLEQATIKQ    50
51 CVVGPNHAAFLLEDGRICRIGFSVQPDRLELGKPDNNDGSKLNSSSGTGR 100
101 TSRPGRTSDSPWFLSGSETLGRLAGNTLGSRWSSGVGGSGGGSSGRSSAG 150
151 ARDSRRQTRVIRTGRDRGSGLLGSQPQPVIPASVIPEELISQAQVVLQGK 200
201 SRSVIIRELQRTNLDVNLAVNNLLSRDDEDGDDGDDTASESYLPGEDLMS 250
251 LLDADIHSAHPSVIIDADAMFSEDISYFGYPSFRRSSLSRLGSSRERDSE 300
301 LLRERESVLRLRERRWLDGASFDNERGSTSKEGESNPDKKNTPVQSPVSL 350
351 GEDLQWWPDKDGTKFTCIGALYSELLAVSSKGELYQWKWSESEPYRNAQN 400
401 PSLHHPRATFLGLTNEKIVLLSANSIRATVATENNKVATWVDETLSSVAS 450
451 KLEHTAQTYSELQGERIVSLHCCALYTCAQLENNLYWWGVVPFSQRKKML 500
501 EKARAKNKKPKSSAGISSMPNITVGTQVCLRNNPLYHAGAVAFSISAGIP 550
551 KVGVLMESVWNMNDSCRFQLRSPESLKSMEKASKTLETKPESKQEPVKTE 600
601 MGPPPSPASTCSDASSIASSASMPYKRRRSTPAPREEEKVNEEQWPLREV 650
651 VFVEDVKNVPVGKVLKVDGAYVAVKFPGTSTNTTCQNSSGPDADPSSLLQ 700
701 DCRLLRIDELQVVKTGGTPKVPDCFQRTPKKLCIPEKTEILAVNVDSKGV 750
751 HAVLKTGSWVRYCVFDLATGKAEQENNFPTSSVAFLGQDERSVAIFTAGQ 800
801 ESPIVLRDGNGTIYPMAKDCMGGIRDPDWLDLPPISSLGMGVHSLINLPA 850
851 NSTIKKKAAIIIMAVEKQTLMQHILRCDYEACRQYLVNLEQAVVLEQNRQ 900
901 MLQTFISHRCDGNRNILHACVSVCFPTSNKETKEEEEAERSERNTFAERL 950
951 SAVEAIANAISVVSSNGPGNRAGSSNSRSLRLREMMRRSLRAAGLGRHEA 1000
1001 GASSSDHQDPVSPPIAPPSWVPDPPSMDPDGDIDFILAPAVGSLTTAATG 1050
1051 SGQGPSTSTIPGPSTEPSVVESKDRKANAHFILKLLCDSAVLQPYLRELL 1100
1101 SAKDARGMTPFMSAVSGRAYSAAITILETAQKIAKAEVSASEKEEDVFMG 1150
1151 MVCPSGTNPDDSPLYVLCCNDTCSFTWTGAEHINQDIFECRTCGLLESLC 1200
1201 CCTECARVCHKGHDCKLKRTSPTAYCDCWEKCKCKTLIAGQKSARLDLLY 1250
1251 RLLTATNLVTLPNSRGEHLLLFLVQTVARQTVEHCQYRPPRIREDRNRKT 1300
1301 ASPEDSDMPDHDLEPPRFAQLALERVLQDWNALRSMIMFGSQENKDPLSA 1350
1351 SSRIGHLLPEEQVYLNQQSGTIRLDCFTHCLIVKCTADILLLDTLLGTLV 1400
1401 KELQNKYTPGRREEAIAVTMRFLRSVARVFVILSVEMASSKKKNNFIPQP 1450
1451 IGKCKRVFQALLPYAVEELCNVAESLIVPVRMGIARPTAPFTLASTSIDA 1500
1501 MQGSEELFSVEPLPPRPSSDQASSSSQSQSSYIIRNPQQRRISQSQPVRG 1550
1551 RDEEQDDIVSADVEEVEVVEGVAGEEDHHDEQEEHGEENAEAEGHHDEHD 1600
1601 EDGSDMELDLLAAAETESDSESNHSNQDNASGRRSVVTAATAGSEAGASS 1650
1651 VPAFFSEDDSQSNDSSDSDSSSSQSDDIEQETFMLDEPLERTTNSSHANG 1700
1701 AAQAPRSMQWAVRNPQHQRAASTAPSSTSTPAASSAGLIYIDPSNLRRSG 1750
1751 TISTSAAAAAAALEASNASSYLTSASSLARAYSIVIRQISDLMGLIPKYN 1800
1801 HLVYSQIPAAVKLTYQDAVNLQNYVEEKLIPTWNWMVSVMDSTEAQLRYG 1850
1851 SALASAGDPGHPNHPLHASQNSARRERMTAREEASLRTLEGRRRATLLSA 1900
1901 RQGMMSARGDFLNYALSLMRSHNDEHSDVLPVLDVCSLKHVAYVFQALIY 1950
1951 WIKAMNQQTTLDTPQLERKRTRELLELGIDNEDSEHENDDDTSQSATLND 2000
2001 KDDDSLPAETGQNHPFFRRSDSMTFLGCIPPNPFEVPLAEAIPLADQPHL 2050
2051 LQPNARKEDLFGRPSQGLYSSSAGSGKCIVEVTMDRNCLEVLPTKMSYAA 2100
2101 NLKNVMNMQNRQKKEGEEQSLLAEEADSSKPGPSAPDVAAQLKSSLLAEI 2150
2151 GLTESEGPPLTSFRPQCSFMGMVISHDMLLGRWRLSLELFGRVFMEDVGA 2200
2201 EPGSILTELGGFEVKESKFRREMEKLRNQQSRDLSLEVDRDRDLLIQQTM 2250
2251 RQLNNHFGRRCATTPMAVHRVKVTFKDEPGEGSGVARSFYTAIAQAFLSN 2300
2301 EKLPNLDCIQNANKGTHTSLMQRLRNRGERDREREREREMRRSSGLRAGS 2350
2351 RRDRDRDFRRQLSIDTRPFRPASEGNPSDDPDPLPAHRQALGERLYPRVQ 2400
2401 AMQPAFASKITGMLLELSPAQLLLLLASEDSLRARVDEAMELIIAHGREN 2450
2451 GADSILDLGLLDSSEKVQENRKRHGSSRSVVDMDLEDTDDGDDNAPLFYQ 2500
2501 PGKRGFYTPRPGKNTEARLNCFRNIGRILGLCLLQNELCPITLNRHVIKV 2550
2551 LLGRKVNWHDFAFFDPVMYESLRQLILASQSSDADAVFSAMDLAFAIDLC 2600
2601 KEEGGGQVELIPNGVNIPVTPQNVYEYVRKYAEHRMLVVAEQPLHAMRKG 2650
2651 LLDVLPKNSLEDLTAEDFRLLVNGCGEVNVQMLISFTSFNDESGENAEKL 2700
2701 LQFKRWFWSIVEKMSMTERQDLVYFWTSSPSLPASEEGFQPMPSITIRPP 2750
2751 DDQHLPTANTCISRLYVPLYSSKQILKQKLLLAIKTKNFGFV 2792

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.