SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q80TZ9 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MTADKDKDKDKEKDRDRDRDRERDKRDKARESENARPRRSCTLEGGAKNY    50
51 AESDHSEDEDNDNNSATTEESNKKSRKKPPKKKSRYERTDTGEITSYITE 100
101 DDVVYRPGDCVYIESRRPNTPYFICSIQDFKLVHSSQACCRSPAPAFCDP 150
151 PACSLPVAPQPPQHLSEAGRGPGGSKRDHLLMNVKWYYRQSEVPDSVYQH 200
201 LVQDRHNENDSGRELVITDPVIKNRELFISDYVDTYHAAALRGKCNISHF 250
251 SDIFAAREFKARVDSFFYILGYNPETRRLNSTQGEIRVGPSHQAKLPDLQ 300
301 PFPSPDGDTVTQHEELVWMPGVSDCDLLMYLRAARSMAAFAGMCDGGSTE 350
351 DGCVAASRDDTTLNALNTLHESSYDAGKALQRLVKKPVPKLIEKCWTEDE 400
401 VKRFVKGLRQYGKNFFRIRKELLPSKETGELITFYYYWKKTPEAASSRAH 450
451 RRHRRQAVFRRIKTRTASTPVNTPSRPPSSEFLDLSSASEDDFDSEDSEQ 500
501 ELKGYACRHCFTTTSKDWHHGGRENILLCTDCRIHFKKYGELPPIEKPVD 550
551 PPPFMFKPVKEEDDGLSGKHSMRTRRSRGSMSTLRSGRKKQPTSPDGRAS 600
601 PINEDIRSSGRNSPSAASTSSNDSKAETVKKSAKKVKEEAASPLKSTKRQ 650
651 REKVASDTEDTDRITSKKTKTQEISRPNSPSEGEGESSDSRSVNDEGSSD 700
701 PKDIDQDNRSTSPSIPSPQDNESDSDSSAQQQMLQAQPPALQAPSGAASA 750
751 PSTAPPGTPQLPTQGPTPSATAVPPQGSPATSQPPNQTQSTVAPAAHTHI 800
801 QQAPTLHPPRLPSPHPPLQPMTAPPSQSSAQPHPQPSLHSQGPPGPHSLQ 850
851 TGPLLQHPGPPQPFGLPSQPSQGQGPLGPSPAAAHPHSTIQLPASQSALQ 900
901 PQQPPREQPLPPAPLAMPHIKPPPTTPIPQLPAPQAHKHPPHLSGPSPFS 950
951 LNANLPPPPALKPLSSLSTHHPPSAHPPPLQLMPQSQPLPSSPAQPPGLT 1000
1001 QSQSLPPPAASHPTTGLHQVPSQSPFPQHPFVPGGPPPITPPSCPPTSTP 1050
1051 PAGPSSSSQPPCSAAVSSGGSVPGAPSCPLPAVQIKEEALDEAEEPESPP 1100
1101 PPPRSPSPEPTVVDTPSHASQSARFYKHLDRGYNSCARTDLYFMPLAGSK 1150
1151 LAKKREEAIEKAKREAEQKAREEREREKEKEKEREREREREREAERAAKA 1200
1201 SSSAHEGRLSDPQLSGPGHMRPSFEPPPTTIAAVPPYIGPDTPALRTLSE 1250
1251 YARPHVMSPTNRNHPFYMPLNPTDPLLAYHMPGLYNVDPTIRERELRERE 1300
1301 IREREIRERELRERMKPGFEVKPPELDPLHPATNPMEHFARHSALTIPPA 1350
1351 AGPHPFASFHPGLNPLERERLALAGPQLRPEMSYPDRLAAERIHAERMAS 1400
1401 LTSDPLARLQMFNVTPHHHQHSHIHSHLHLHQQDPLHQGSAGPVHPLVDP 1450
1451 LTAGPHLARFPYPPGTLPNPLLGQPPHEHEMLRHPVFGTPYPRDLPGAIP 1500
1501 PPMSAAHQLQAMHAQSAELQRLAMEQQWLHGHPHMHGGHLPSQEDYYSRL 1550
1551 KKEGDKQL 1558

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.