 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q80X50 from www.uniprot.org...
The NucPred score for your sequence is 0.82 (see score help below)
1 MMTSVGTNRARGNWEQPQNQNQTQHKQRPQATAEQIRLAQMISDHNDADF 50
51 EEKVKQLIDITGKNQDECVIALHDCNGDVNRAINVLLEGNPDTHSWEMVG 100
101 KKKGVSGQKDGGQTESNEEGKENRDRDRDYSRRRGGPPRRGRGASRGREF 150
151 RGQENGLDGTKSGGPSGRGTDRGRRGRGRGRGSSGRRGGRFSAQGMGTFN 200
201 PADYAEPANTDDNYGNSSGNTWNNTGHFEPDDGTRLDFIGVEGSNYPRKF 250
251 ETAPGAWRTATEEWGTEDWNEDLSETKIFTASNVSSVPLPAENVTITAGQ 300
301 RIDLAVLLGKTPSSMENDSSNLDPSQAPSLAQPLVFSNSKQNAISQPASG 350
351 STFSHHSMVSMLGKGFGDVGEAKGGSTTGSQFLEQFKTAQALAQLAAQHS 400
401 QSGSTTTSSWDMGSTTQSPSLVQYDLKSANDSTVHSPFTKRQAFTPSSTM 450
451 MEVFLQEKPPAVATSTAAPPPPSSPLPSKSTSAPQMSPGSSDNQSSSPQP 500
501 AQQKLKQQKKKTSLTSKIPALAVEMPGSADISGLNLQFGALQFGSEPVLS 550
551 DYESTPTTSASSSQAPSSLYTSTASESSSTVSSNQSQESGYQSGPIQSTT 600
601 YTSQNNAQGPLYEQRSTQTRRYPSSISSSPQKDLTQAKNGFSSVQATQLQ 650
651 TTQSVEGATGSAVKSESPSTSSIPSLNETVPAASLLTTANQHSSSLSGLS 700
701 HTEEIPNTTTTQHSSALSTQQNTLSSSTSSGRTSTSTLLHTSVESEANLH 750
751 SSSSTFSTTSSTVSAPPPVVSVSSSLNSGSSLGLSLGSNSTVTASTRSSV 800
801 ATTSGKAPPNLPPGVPPLLPNPYIMAPGLLHAYPPQVYGYDDLQMLQTRF 850
851 PLDYYSIPFPTPTTPLTGRDGSLASNPYSGDLTKFGRGDASSPAPATTLA 900
901 QPQQNQTQTHHTTQQTFLNPALPPGYSYTSLPYYTGVPGLPSTFQYGPAV 950
951 FPVAPTSSKQHGVNVSVNASATPFQQPSGYGSHGYNTGVSVTSSNTGVPD 1000
1001 ISGSVYSKTQQSFEKQGFHSGTPAASFNLPSALGSGGPINPATAAAYPPA 1050
1051 PFMHILTPHQQPHSQILHHHLQQDGQTGSGQRSQTSSIPQKPQTNKSAYN 1100
1101 SYSWGAN 1107
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.