SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q80Z38 from www.uniprot.org...

The NucPred score for your sequence is 0.93 (see score help below)

   1  MKSLLNAFTKKEVPFREAPAYSNRRRRPPNTLAAPRVLLRSNSDNNLNAG    50
51 APEWAVCSAATSHRSLSPQLLQQTPSKPDGATKSLGSYTPGPRSRSPSLN 100
101 RLGGTAEDGKRTQPHWHVGSPFTPGANKDSLSTFEYPGPRRKLYSAVPGR 150
151 LFVAVKPYQPQVDGEIPLHRGDRVKVLSIGEGGFWEGSARGHIGWFPAEC 200
201 VEEVQCKPRDSQAETRADRSKKLFRHYTVGSYDSFDAASDCIIEDKTVVL 250
251 QKKDNEGFGFVLRGAKADTPIEEFTPTPAFPALQYLESVDEGGVAWQAGL 300
301 RTGDFLIEVNNENVVKVGHRQVVNMIRQGGNHLILKVVTVTRNLDPDDTA 350
351 RKKAPPPPKRAPTTALTLRSKSMTAELEELGLSLVDKASVRKKKDKPEEI 400
401 VPASKPSRTAENVAIESRVATIKQRPTSRCFPAASDVNSVYERQGIAVMT 450
451 PTVPGSPKGPFLGLPRGTMRRQKSIDSRIFLSGITEEERQFLAPPMLKFT 500
501 RSLSMPDTSEDIPPPPQSVPPSPPPPSPTTYNCPRSPTPRVYGTIKPAFN 550
551 QNPVVAKVPPATRSDTVATMMREKGMFYRRELDRFSLDSEDVYSRSPAPQ 600
601 AAFRTKRGQMPENPYSEVGKIASKAVYVPAKPARRKGVLVKQSNVEDSPE 650
651 KTCSIPIPTIIVKEPSTSSSGKSSQGSSMEIDPQATEPGQLRPDDSLTVS 700
701 SPFAAAIAGAVRDREKRLEARRNSPAFLSTDLGDEDVGLGPPAPRMQASK 750
751 FPEEGGFGDEDETEQPLLPTPGAAPRELENHFLGGGEAGAQGEAGGPLSS 800
801 TSKAKGPESGPAAPLKSSSPAGPENYVHPLTGRLLDPSSPLALALSARDR 850
851 AMQESQQGHKGEAPKADLNKPLYIDTKMRPSVESGFPPVTRQNTRGPLRR 900
901 QETENKYETDLGKDRRADDKKNMLINIVDTAQQKSAGLLMVHTVDVPMAG 950
951 PPLEEEEDREDGDTKPDHSPSTVPEGVPKTEGALQISAAPEPAVAPGRTI 1000
1001 VAAGSVEEAVILPFRIPPPPLASVDLDEDFLFTEPLPPPLEFANSFDIPD 1050
1051 DRAASVPALADLVKQKKNDTSQPPTLNSSQPANSTDSKKPAGISNCLPSS 1100
1101 FLPPPESFDAVTDSGIEEVDSRSSSDHHLETTSTISTVSSISTLSSEGGE 1150
1151 SMDTCTVYADGQAFVVDKPPVPPKPKMKPIVHKSNALYQDTLPEEDTDGF 1200
1201 VIPPPAPPPPPGSAQAGVAKVIQPRTSKLWGDVPEVKSPILSGPKANVIS 1250
1251 ELNSILQQMNRGKSVKPGEGLELPVGAKSANLAPRSPEVMSTVSGTRSTT 1300
1301 VTFTVRPGTSQPITLQSRPPDYESRTSGPRRAPSPVVSPTELSKEILPTP 1350
1351 PPPSATAASPSPTLSDVFSLPSQSPAGDLFGLNPAGRSRSPSPSILQQPI 1400
1401 SNKPFTTKPVHLWTKPDVADWLESLNLGEHKETFMDNEIDGSHLPNLQKE 1450
1451 DLIDLGVTRVGHRMNIERALKQLLDR 1476

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.