SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q85FM9 from www.uniprot.org...

The NucPred score for your sequence is 0.87 (see score help below)

   1  MMDRNELPFCNKTIDRAAMKRLIGKLVVCFGIASTTNILDQVKVLGFQQA    50
51 TEASISLGIDDLSAVPTRGWLVRDAEKQGYVSEGHYRCGSLHAIEKLRQS 100
101 IEAWYATSECLKREMSPSFKMIDPLNPVHMMSVSGARGTISQVHQLLGMR 150
151 GLMADPRGQVIDLPIRRNLREGLSLTEYIISCYGARKGVVDTAVRTSDAG 200
201 YLTRRLVEVVQHIAVRRRDCETPRSLAFLTSNTGERRRGFLGTMPHQGLV 250
251 GRVLADHVYWDVRCIATRNQDISDGLASNLMASSQPIHVRSPLTCKSIFW 300
301 ICQFCYGWSLAHCNLVELGEAVGIIAGQSIGEPGTQLTLRTFHTGGVFTG 350
351 DIAEYVRIPFNGLIKFDERLLHPTRTRHGHPAWMCRNDLPLFIGNSVGTQ 400
401 NSLIPAQSLLMIRTGQYVESQQVIAEVRAKEFPPKECIRKPIYPNSRGEI 450
451 HWSKFVWHVRDSICNIARLVREASHIWILSGSPSKFDGNSFFHKDQDRVR 500
501 IKPHPIKRIRSHSEGIFEAQASASNCVDRRKGIQEFGTDSKYFSNWSKRP 550
551 RSNYILSNVWLERAELENSVSLLMERCQKNIKKLDFVSINVQLNNGSDQD 600
601 HIFATYENFEYQTIVSGIIKYGTVEIKPVNPKRLQLDGGTGNKSSRPWCR 650
651 VVRKGNFFLIPEEVYLTHEPSSSILVTNNAIVKKGAQITNNIITKSGGLI 700
701 RMRKRSRDATTIRILPGYIYNPEKQINISKRGNTLLAPGNRISDDIEVKN 750
751 WIYLQPFTFRRKGKTFVLMTPVSEYNLSSDSLAQVASRFDKPKTQRRAKA 800
801 KTLSFICCKNGEKIEVINDVPTQLVRLCLIIEWQKYLHETLPRKRNYFSL 850
851 ISVKISYLFKTFLQVNPMVSPPTQRGVRVDEIFRTSTPLGKPSPPQLDLA 900
901 NSCCKSAVNCQGIIHLTLEPATSFLILSPFNLSRNNSVTDTRDGGCGGEI 950
951 GKYFYGSEDGFFCIGENKKKISLSSKCISENYANPNVEEGWIKARRASSN 1000
1001 LGQRKAEEVGLVGTLSPISCSSIPHHLSLGGKNLSTRKGFVDYSIDKSEH 1050
1051 QDFYLIDESKLLLKCPINFYVKKGFLDKPSYLPTRVFSREIMLISLGLLI 1100
1101 SESRYLHRDRTCFQSGQVMAIHQDYSLVRTGKTFLATRGANPHKSSGDIL 1150
1151 EEGDTLITLPYDRLKSGDITQGLPKVEQLLESRSIASISAGIGDLFEKWC 1200
1201 QNITKLIGNPWSHLLGAGRSMEHCQLILIDQIRKVYESQGVRICDKHLEI 1250
1251 IVRQLTSRVVASEDGVTNVFLPGELVELSQAERINRVLKKSIFYEPIVLG 1300
1301 MTRASLSTTSFLAEASFQETTRVLAKAALRGRIDWLKGLKENVVIGDSVP 1350
1351 VGTGSPEIYCQLNINKEKESRLASGGSKKLTKWETGSSLSGYHKKRDFNP 1400
1401 SFFIRKELNRSFTRLHLDMW 1420

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.