SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q86XX4 from www.uniprot.org...

The NucPred score for your sequence is 0.64 (see score help below)

   1  MGVLKVWLGLALALAEFAVLPHHSEGACVYQDSLLADATIWKPDSCQSCR    50
51 CHGDIVICKPAVCRNPQCAFEKGEVLQIAANQCCPECVLRTPGSCHHEKK 100
101 IHEHGTEWASSPCSVCSCNHGEVRCTPQPCPPLSCGHQELAFIPEGSCCP 150
151 VCVGLGKPCSYEGHVFQDGEDWRLSRCAKCLCRNGVAQCFTAQCQPLFCN 200
201 QDETVVRVPGKCCPQCSARSCSAAGQVYEHGEQWSENACTTCICDRGEVR 250
251 CHKQACLPLRCGKGQSRARRHGQCCEECVSPAGSCSYDGVVRYQDEMWKG 300
301 SACEFCMCDHGQVTCQTGECAKVECARDEELIHLDGKCCPECISRNGYCV 350
351 YEETGEFMSSNASEVKRIPEGEKWEDGPCKVCECRGAQVTCYEPSCPPCP 400
401 VGTLALEVKGQCCPDCTSVHCHPDCLTCSQSPDHCDLCQDPTKLLQNGWC 450
451 VHSCGLGFYQAGSLCLACQPQCSTCTSGLECSSCQPPLLMRHGQCVPTCG 500
501 DGFYQDRHSCAVCHESCAGCWGPTEKHCLACRDPLHVLRDGGCESSCGKG 550
551 FYNRQGTCSACDQSCDSCGPSSPRCLTCTEKTVLHDGKCMSECPGGYYAD 600
601 ATGRCKVCHNSCASCSGPTPSHCTACSPPKALRQGHCLPRCGEGFYSDHG 650
651 VCKACHSSCLACMGPAPSHCTGCKKPEEGLQVEQLSDVGIPSGECLAQCR 700
701 AHFYLESTGICEACHQSCFRCAGKSPHNCTDCGPSHVLLDGQCLSQCPDG 750
751 YFHQEGSCTECHPTCRQCHGPLESDCISCYPHISLTNGNCRTSCREEQFL 800
801 NLVGYCADCHHLCQHCAADLHNTGSICLRCQNAHYLLLGDHCVPDCPSGY 850
851 YAERGACKKCHSSCRTCQGRGPFSCSSCDTNLVLSHTGTCSTTCFPGHYL 900
901 DDNHVCQPCNTHCGSCDSQASCTSCRDPNKVLLFGECQYESCAPQYYLDF 950
951 STNTCKECDWSCSACSGPLKTDCLQCMDGYVLQDGACVEQCLSSFYQDSG 1000
1001 LCKNCDSYCLQCQGPHECTRCKGPFLLLEAQCVQECGKGYFADHAKHKCT 1050
1051 ACPQGCLQCSHRDRCHLCDHGFFLKSGLCVYNCVPGFSVHTSNETCSGKI 1100
1101 HTPSLHVNGSLILPIGSIKPLDFSLLNVQDQEGRVEDLLFHVVSTPTNGQ 1150
1151 LVLSRNGKEVQLDKAGRFSWKDVNEKKVRFVHSKEKLRKGYLFLKISDQQ 1200
1201 FFSEPQLINIQAFSTQAPYVLRNEVLHISRGERATITTQMLDIRDDDNPQ 1250
1251 DVVIEIIDPPLHGQLLQTLQSPATPIYQFQLDELSRGLLHYAHDGSDSTS 1300
1301 DVAVLQANDGHSFHNILFQVKTVPQNDRGLQLVANSMVWVPEGGMLQITN 1350
1351 RILQAEAPGASAEEIIYKITQDYPQFGEVVLLVNMPADSPADEGQHLPDG 1400
1401 RTATPTSTFTQQDINEGIVWYRHSGAPAQSDSFRFEVSSASNAQTRLESH 1450
1451 MFNIAILPQTPEAPKVSLEASLHMTAREDGLTVIQPHSLSFINSEKPSGK 1500
1501 IVYNITLPLHPNQGIIEHRDHPHSPIRYFTQEDINQGKVMYRPPPAAPHL 1550
1551 QELMAFSFAGLPESVKFHFTVSDGEHTSPEMVLTIHLLPSDQQLPVFQVT 1600
1601 APRLAVSPGGSTSVGLQVVVRDAETAPKELFFELRRPPQHGVLLKHTAEF 1650
1651 RRPMATGDTFTYEDVEKNALQYIHDGSSTREDSMEISVTDGLTVTMLEVR 1700
1701 VEVSLSEDRGPRLAAGSSLSITVASKSTAIITRSHLAYVDDSSPDPEIWI 1750
1751 QLNYLPSYGTLLRISGSEVEELSEVSNFTMEDINNKKIRYSAVFETDGHL 1800
1801 VTDSFYFSVSDMDHNHLDNQIFTIMITPAENPPPVIAFADLITVDEGGRA 1850
1851 PLSFHHFFATDDDDNLQRDAIIKLSALPKYGCIENTGTGDRFGPETASDL 1900
1901 EASFPIQDVLENYIYYFQSVHESIEPTHDIFSFYVSDGTSRSEIHSINIT 1950
1951 IERKNDEPPRMTLQPLRVQLSSGVVISNSSLSLQDLDTPDNELIFVLTKK 2000
2001 PDHGHVLWRQTASEPLENGRVLVQGSTFTYQDILAGLVGYVPSVPGMVVD 2050
2051 EFQFSLTDGLHVDTGRMKIYTELPASDTPHLAINQGLQLSAGSVARITEQ 2100
2101 HLKVTDIDSDDHQVMYIMKEDPGAGRLQMMKHGNLEQISIKGPIRSFTQA 2150
2151 DISQGQPEYSHGTGEPGGSFAFKFDVVDGEGNRLIDKSFSISISEDKSPP 2200
2201 VITTNKGLVLDENSVKKITTLQLSATDQDSGPTELIYRITRQPQLGHLEH 2250
2251 AASPGIQISSFTQADLTSRNVQYVHSSEAEKHSDAFSFTLSDGVSEVTQT 2300
2301 FHITLHPVDDSLPVVQNLGMRVQEGMRKTITEFELKAVDADTEAESVTFT 2350
2351 IVQPPRHGTIERTSNGQHFHLTSTFTMKDIYQNRVSYSHDGSNSLKDRFT 2400
2401 FTVSDGTNPFFIIEEGGKEIMTAAPQPFRVDILPVDDGTPRIVTNLGLQW 2450
2451 LEYMDGKATNLITKKELLTMDPDTEDAQLVYEITTGPKHGFVENKLQPGR 2500
2501 AAATFTQEDVNLGLIRYVLHKEKIREMMDSFQFLVKDSKPNVVSDNVFHI 2550
2551 QWSLISFKYTSYNVSEKAGSVSVTVQRTGNLNQYAIVLCRTEQGTASSSS 2600
2601 QPGQQDYVEYAGQVQFDEREDTKSCTIVINDDDVFENVESFTVELSMPAY 2650
2651 ALLGEFTQAKVIINDTEDEPTLEFDKKIYWVNESAGFLFAPIERKGDASS 2700
2701 IVSAICYTVPKSAMGSLFYALESGSDFKSRGMSAASRVIFGPGVTMSTCD 2750
2751 VMLIDDSEYEEEEEFEIALADASDNARIGRVATAKVLISGPNDASTVSLG 2800
2801 NTAFTVSEDAGTVKIPVIRHGTDLSTFASVWCATRPSDPASATPGVDYVP 2850
2851 SSRKVEFGPGVIEQYCTLTILDDTQYPVIEGLETFVVFLSSAQGAELTKP 2900
2901 FQAVIAINDTFQDVPSMQFAKDLLLVKEKEGVLHVPITRSGDLSYESSVR 2950
2951 CYTQSHSAQVMEDFEERQNADSSRITFLKGDKVKNCTVYIHDDSMFEPEE 3000
3001 QFRVYLGLPLGNHWSGARIGKNNMATITISNDEDAPTIEFEEAAYQVREP 3050
3051 AGPDAIAILNIKVIRRGDQNRTSKVRCSTRDGSAQSGVDYYPKSRVLKFS 3100
3101 PGVDHIFFKVEILSNEDREWHESFSLVLGPDDPVEAVLGDVTTATVTILD 3150
3151 QEAAGSLILPAPPIVVTLADYDHVEEVTKEGVKKSPSPGYPLVCVTPCDP 3200
3201 HFPRYAVMKERCSEAGINQTSVQFSWEVAAPTDGNGARSPFETITDNTPF 3250
3251 TSVNHMVLDSIYFSRRFHVRCVAKAVDKVGHVGTPLRSNIVTIGTDSAIC 3300
3301 HTPVVAGTSRGFQAQSFIATLKYLDVKHKEHPNRIHISVQIPHQDGMLPL 3350
3351 ISTMPLHNLHFLLSESIYRHQHVCSNLVTTYDLRGLAEAGFLDDVVYDST 3400
3401 ALGPGYDRPFQFDPSVREPKTIQLYKHLNLKSCVWTFDAYYDMTELIDVC 3450
3451 GGSVTADFQVRDSAQSFLTVHVPLYVSYIYVTAPRGWASLEHHTEMEFSF 3500
3501 FYDTVLWRTGIQTDSVLSARLQIIRIYIREDGRLVIEFKTHAKFRGQFVM 3550
3551 EHHTLPEVKSFVLTPDHLGGIEFDLQLLWSAQTFDSPHQLWRATSSYNRK 3600
3601 DYSGEYTIYLIPCTVQPTQPWVDPGEKPLACTAHAPERFLIPIAFQQTNR 3650
3651 PVPVVYSLNTEFQLCNNEKVFLMDPNTSDMSLAEMDYKGAFSKGQILYGR 3700
3701 VLWNPEQNLNSAYKLQLEKVYLCTGKDGYVPFFDPTGTIYNEGPQYGCIQ 3750
3751 PNKHLKHRFLLLDRNQPEVTDKYFHDVPFEAHFASELPDFHVVSNMPGVD 3800
3801 GFTLKVDALYKVEAGHQWYLQVIYIIGPDTISGPRVQRSLTAPLRRNRRD 3850
3851 LVEPDGQLILDDSLIYDNEGDQVKNGTNMKSLNLEMQELAVAASLSQTGA 3900
3901 SIGSALAAIMLLLLVFLVACFINRKCQKQRKKKPAEDILEEYPLNTKVEV 3950
3951 PKRHPDRVEKNVNRHYCTVRNVNILSEPEAAYTFKGAKVKRLNLEVRVHN 4000
4001 NLQDGTEV 4008

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.