 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q8CJ27 from www.uniprot.org...
The NucPred score for your sequence is 0.90 (see score help below)
1 MATMQAASCPEERGRRARPDPEAGDPSPPVLLLSHFCGVPFLCFGDVRVG 50
51 TSRTRSLVLHNPHEEPLQVELSLLRAAGQGFSVAPNRCELKPKEKLTISV 100
101 TWTPLREGGVREIVTFLVNDFLKHQAILLGNAEEPKKKKRSLWNTSKKIP 150
151 ASSKHTKRTSKNQHFNESFTISQKDRIRSPLQPCENLAMSECSSPTENKV 200
201 PTPSISPIRECQSETCLPLFLRESTAYSSLHESENTQNLKVQDASISQTF 250
251 DFNEEVANETFINPISVCHQSEGDRKLTLAPNCSSPLNSTQTQIHFLSPD 300
301 SFVNNRYTSDNDLKSMKNVLSDTFRKDPAESVCLESQTVHEVCQTILSPD 350
351 SFLNDNYGLKKGLNFKSVNPVLSPTQFVKDSMGHVGQQTGKSNEASQDWR 400
401 INEGLAYTPECQHAQTPSSRSEKQNPVEVKPHTYDFTKQKPKISEFQDAF 450
451 CHQSKQPHKRRPILSATVTKRKPTNAREKLPEINKPDAKRCLEGLVGERG 500
501 KEVGSLREKGFHSSLPVVEPGVSKALSYRDEVTPATVVVARKRKSHGTVG 550
551 DANGKVAAEEWMDMCEVKRIHFSPLESTPSTVARTTKKEGHTSKRISSLE 600
601 RSGLKKKMDSSILKTPLSKTKKKRRSIVAVAQSHLTFIKPLKAAIPRHPM 650
651 PFAAKNMFYDERWKEKQEQGFTWWLNYILTPDDFTVKTNVSKVNAASLVL 700
701 GAESQHKISVPKAPTKEEVSLRAYTASCRLNRLRRTACSLFTSEKMVKAI 750
751 KKVEIEIEVGRLLVRKDRHLWKDIGQRQKVLNWLLSYNPLWLRIGLETVF 800
801 GELIPLADNSDVTGLAMFILNRLLWNPDIAAEYRHPTVPLLFRDGHEAAL 850
851 SKFTLKKLLLLICFLDHAKISRLIDHDPCLFCKDAEFKASKELLLAFSRD 900
901 FLSGEGDLSRHLSFLGLPVSHVQTPLDEFDFAVTNLAVDLQCGVRLVRTV 950
951 ELLTQNWNLSDKLRIPAISRVQKMHNVDLVLQVLKSRGVPLTDEHGSAIS 1000
1001 SKDVVDRHREKTLGLLWKIALAFQVDISLNLDQLKEEIDFLKHTHSIKRA 1050
1051 MSALTCPSQAITNKQRDKRISGNFERYGDSVQLLMDWVNAVCAFYNKKVE 1100
1101 NFTVSFSDGRILCYLIHHYHPCYVPFDAICQRTSQSVACAQTGSVVLNSS 1150
1151 SESEGGCLDLSLEALDHESTPEMYKELLENEKKNFHLVRSAARDLGGIPA 1200
1201 MIHHSDMSNTIPDEKVVITYLSFLCARLLDLRKEIRAARLIQTTWRKYKL 1250
1251 KRDLKHHQERDKAARVIQSVVLNFLSRRRLQKNVSAALVIQKCWRRVSAQ 1300
1301 RKLRMLKNEKLAKLQNKSAVLIQAYWRRYSTRKRFLRLKHYSVILQSRIR 1350
1351 MKIALTSYKRYLWATVTIQRHWRAYLSRKRDQQIFRKLKSSSLVIQFMFR 1400
1401 RWKRRKLQLQTKAAVTLQRAFREWHLRKQIRERSAVVIQSWYRMHRELQK 1450
1451 YIYIRSCVIVIQRRVRCFQAQKLYKRRKDAILTLQKHYRARQKGKLAHAD 1500
1501 YLQKRAATIRLQAAFRGMKARHSYRLQIGAACVLQSYWRMRQERVRFLNL 1550
1551 KKMVIKLQAHIRKYQQLQKYKKIKKAAITIQTHFRASISARRVLASYQKT 1600
1601 RSSVIVLQSACRGMQARKAFRHALASVIKIQSYYRAYICRKTFQNFKNAT 1650
1651 IKLQSIVKMKQSRKQYLQIRAAALFIQRWYRSQKLASQKRKEYIQVRESC 1700
1701 IKLQSHFRGCLVRKQLRLQCKAAISLQSYFRMRTARQRYLKMCKAALVIQ 1750
1751 SFYCAYRAQISQRKNFLQVKRAAICLQAAYRGCKVRRQIKQQSTAAVTIQ 1800
1801 RVFRGHSQRMKYQTMLQSAVKIQRWYRAQKVAYDMRIQFLKTREAVVCLQ 1850
1851 SAYRGWQVRQQLRRQHEAAVKIQSTFRMAVAQQQYKLLRAAAAVIQQHVR 1900
1901 ARAAGKRQHLAYIQLRHAALVFQAAWKGKMLRRQIARQHQCAALIQSYYR 1950
1951 MHIQRRKWSIMKTAALQIQLCYRAYKVGKEQRHLYLKTKAAVVTLQSAYR 2000
2001 GMKVRKRVAECHKAAVTIQSKFRAYRTQKKYTTYRTSAIVIQRWYRNIKI 2050
2051 TTQQHQEYLNLRRAAVQVQAAYRGIRVRRRIQHMHMAATLIEAMFKMRQS 2100
2101 RVRYLKMRTAALIIQVRYRAYYLGKIQHEKYLRTLKAIKTLQAGVRGARV 2150
2151 RRTVRKMHFAATLIQSHFRGHRQQTYFHRLRKAATMVQQRYRAVKEGSAE 2200
2201 FQRYSRLRRSVLLIQAAFRGLRTRRHLKAMHLAATLIQRRFRTFAMRRKF 2250
2251 LSLRKTAIWIQRQYRARLYAKYSRQQLLLEKAVIKIQSSYRGWVVRKRVQ 2300
2301 KMHRAATVIQATFRMHGAYMRYQHLKRASVVIQVHTAAELQRQKHAAVIL 2350
2351 QAAVRGMKTRSHLKTMHSSATLIQSQFRAFIVRRRFIALRKAAIFVQRKF 2400
2401 RATLYAKHKLHQFLQLRKAAITIQSSYRRLMVQKKLQEMHRAAALIQATF 2450
2451 RMHRTYVAFHIWKCASIRIQQCYRTYRTIKLQKEKLIREEQHSAAVLIQS 2500
2501 TYRMYRQRCFYQQRRWAAKVIQKTYRANKRRQDLLYVCKEETPLLQMHFQ 2550
2551 GLNTAKQGRQQHGAAMITQKHFRAFKARRLMEAERGFQAGCRKYKAKKYL 2600
2601 SKVEAACRIQAWYRRWRAHKKYLTLLKAVNIIEGYLSAQLARRRFLKMRA 2650
2651 AAIIIQRKWRATLSVRGARENLKRHRAACVIQAHFRGYQARQSFLQQRSA 2700
2701 VLIIQRHVRAMVAAKQERIKYIKLKKSTVVVQALVRGWLVRKRVSEQKAK 2750
2751 TRLFHFTAAAYCHMCALKIQRAYRLHVTLRNAKKHMDSVIFIQRWFRKRL 2800
2801 QRKRFIEQYHKILSTRREAHACWLQQDRAASVIQKAVRRFLLCRRQEKIT 2850
2851 SCATRIQALWRGYSWRKKNDHTEIKAIRRSLRAVSTTVEEENKLYRRTER 2900
2901 ALHHLLTYKHLSAILDALKHLEVVTRLSPLCCENMAESGAVSTIFVVIRS 2950
2951 CNRSVPCMEVVGYAVQVLLNVAKYDKTIAAVYEAENCVDTLLELLQVYRE 3000
3001 KPGDRVAEKSASIFTRTCCLLAVLLKTEQCAFDAQSRSKVTDRIYRLYKF 3050
3051 TVPKHKVNTQGLFDKQKQNSCVGFPCIPERTMKTRLVSRLKPQWVLRRDN 3100
3101 VEEITNSLQAIQLVMDTLGISY 3122
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.