SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q8HYY4 from www.uniprot.org...

The NucPred score for your sequence is 0.90 (see score help below)

   1  MMSCWFSCAPKNRQAADWNKYDDRLMRAAERGDVEKVSSILAKKGVNPGK    50
51 LDVEGRSAFHVVASKGNLECLNAILIHGVDITTSDTAGRNALHLAAKYGH 100
101 ALCLQKLLQYNCPTEHVDLQGRTALHDAAMADCPSSIQLLCDHGASVNAK 150
151 DVDGRTPLVLATQMCRPTICQLLIDRGADINSRDKQNRTALMLGCEYGCK 200
201 DAVEVLIKNGADVTLLDALGHDSSYYARIGDNLDILTLLKTASENSNKGR 250
251 ELWKKGPSLQQRNLSQMLDEVNTKSNQREHQNIQDLEIENEDLKERLRKI 300
301 QQEQRILLDKVNGLQLQLNEEVMVADDLESEKEKLKSLLAAKEKQHEESL 350
351 RTIEALKSRFKYFESDHLGSGSHFRKEDMLLKQGQMYMTDSQCTSTGMPV 400
401 HMQSRSMLRPLELALPNQASYSENEILKKELEAMRTFCDSAKQDRLKLQN 450
451 ELAHKVAECKALALECERVKEDSDEQIKQLEDALKDVQKRMYESEGKVKQ 500
501 MQTHFLALKEHLTSDAATGNHRLMEELKDQLKDMKVKYEGASAEVGKLRN 550
551 QIKQNEMLVEEFKRDEGKLMEENKRLQKELSMCELEREKRGRKLTEMEGQ 600
601 LKDLSAKLALSIPAEKFENMKSLLSNELNEKAKKLIDVEREYERSLNETR 650
651 PLKRELENLKAKLAQHVKPEEHEQLKSRLEQKSGELGKRITELTSKNQTL 700
701 QKEIEKVCLDNKLLTQQVNNLTTEMKNHYVPLKVSEEMKKSHDVIVDDLN 750
751 KKLSDVTHKYTEKKLEMEKLLMENASLSKNVSRLETVFIPPERHEKEMMA 800
801 LKSNITELKKQLSELNKKCGEDQEKIYSLMSENNDLKKTMSHQYVPVKTH 850
851 EEIKTALSSTLDKTNRELVDVKKKCEDINQEFVKIKDENEILKRNLENTQ 900
901 NQVKAEYISLREHEEKMSGLRKSMKKVQDNSAEILAKYKKSQEEIVTLHE 950
951 EIAAQKRELDTIQECIKLKYAPIISLEECERKFKATEKELKEQLSQQTQK 1000
1001 YNTSEEEAKKCKQENDKLKKEILTLQKDLKDKNVHIENSYETERALSRKT 1050
1051 EELNRQLKDLLQKYTEAKKEKEKLVEENAKQTSEILAAQTLLQKQHVPLE 1100
1101 QVESLKKSLSGTIETLKEELKTKQRCYEKEQQTVTQLRQMLENQKNSSVP 1150
1151 LAEHLQVKEAFEKEVGIIKASLREKEEESQNKTEEVSKLQSEIQNTKQAL 1200
1201 KKLETREVVDLSKYKATKSDLETQISDLNEKLANLNRKYEEVCEEVLHAK 1250
1251 KKELSAKDEKELLHFSIEQEIKDQQERCDKSLTTITELQRRIQESAKQIE 1300
1301 AKDNKITELLNDVERLKQALNGLSQLTYGSGSPSKRQSQLIDSLQQQVRS 1350
1351 LQQQLADADRQHQEVIAIYRTHLLSAAQGHMDEDVQAALLQIIQMRQGLV 1400
1401 C 1401

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.