 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q8I8U7 from www.uniprot.org...
The NucPred score for your sequence is 0.84 (see score help below)
1 MSVIENVPVNTFRNYLNILNDSSSKDELKLKATQELSEHFEMIMQSPAYP 50
51 SFLDNSLKIFMRILQDGEPQFIQENTMQHIRKLILEMIHRLPITESLRQH 100
101 VKTIITMMLKILKTDNEENVLVCLRIIIELHKHFRPSFNSEIQLFLGFVK 150
151 EIYTNLPNHLTSIFETSNDVWVTDLKDLNLEVLLSESYSVRTIHVEKALD 200
201 SNSQQQIYNLLPRGILSLKVLQELPIIVVLMYQIYKNAVHQEVSEFIPLI 250
251 LTTINLQPTVTRRNSPQKEIYVEFMGAQIKTLSFLAYIVRIFQEVVIASS 300
301 LSVTSGMLNLMKNCPKEAAHLRKELLIAARHIFATDLRQKFIPSIEQLFD 350
351 EDLLIGKGVTLDSIRPLAYSTLADLAHHVRQSLNIDVLIKAVNLFSKNVH 400
401 DESLAVGIQTMSCKLLLNLVDCLRHHSETEPQRSKALLSKLLKVFVKKFE 450
451 TIAKIQLPLIIQKCKGHAFSGALVNSSGNASLSHINAPDLKDDISNIQVS 500
501 ASGSQWIYSVNVAEFRSLVKTLVGGVKTITWGFFNSKFQLTDTKLANHEK 550
551 IFGPEIVCSYIDLVYYAMEALDIYTINVNPNQQRTSGLISRSKEEKEVLE 600
601 HFSGIFLMMHSQNFQEIFSTTINFLVERIYKNQSLQVIANSFLANPTTSP 650
651 LFATVLVEYLLNKMEEMGSNLERSNLYLRLFKLVFGSVSLFPVENEQMLR 700
701 PHLHKIVNRSMELALISEEPYNYFLLLRALFRSIGGGSHDLLYQEFLPLL 750
751 PNLLEGLNRLQSGFHKQHMRDLFVELCLTVPVRLSSLLPYLPMLMDPLVS 800
801 ALNGSPTLISQGLRTLELCVDNLQPDFLYDHIQPVRAALMQALWKTLRNQ 850
851 DNAALVAFRVLGKFGGGNRKMMVEPQALSYIINDKPTISIVTYFQEYETP 900
901 IDFPVDEAIKSAFRALGSNSTDQFYRRQSWEVIRCFLAAFISLDDEKHML 950
951 LKLFTHVDFVENKIMNWSTFQHKAGNETVRETHQTALIGMLVASATKDLR 1000
1001 DSVCPVMAAVVRHYTMVAIAQQAGPFPQKGYQATHGIDPMILIDALASCM 1050
1051 GHEEKELCKPGIACMGIILDTATNIMGNKDRACKLPIIQYLAEKMVSLCY 1100
1101 DRPWYSKVGGCQAIQFLCKHMSLRALFQNLFNFLKAFMFVLMDLEGDVSN 1150
1151 GAIEITKSYMKSMLEICLTPINECYKNIDLKDLQAKATYEVIHELVRHIT 1200
1201 SPNTIVREESMVLLKHIGTIQSKTVSEVMDPHKDVLADIIPPKKHLLRHQ 1250
1251 PANAQIGLMDGNTFCTTLEPRLFTIDLTNTYHKLFFHELLTLSEAEDATL 1300
1301 AKLDCYKNVPNLIPLRTSALRALAACHYISDIGYKEKIINIIFKVMESDK 1350
1351 SELQTTAFHCMKHFITGVTLEKEKVQSAMRPLLLKLGDHRNLSIPAIKRL 1400
1401 SYFTQIFPQMFNEKLSEQILQHCSKIMEIFVSEYKSTSPNVNFFASSKGG 1450
1451 EYEQKIVILIEMFFYISASVKYIEKLCQLVLKTEKNLMIEASSPYREALI 1500
1501 KFLQRFPTETVDLFLTESLMIDPQWNRLFIYLLKHETGVSFRAVIKSSRY 1550
1551 NNLIHYLNTHTEFPEALKYEIQHQAVLIIFTLMESDDQWIPTRQDIVDAL 1600
1601 KNCWQNYLSTLSSEDVLCDLWHLIGKILLHYFSNNTNDIELLFQLLRALC 1650
1651 FRFIPDVYFLRDFLQHTVAQSFTVNWKRNAFFYFVENFNNSFLSEELKAK 1700
1701 IITAVIIPCFAVSFDKGEGNKLIGAPPTPYQEDEKNIVSVFINKVFDPDK 1750
1751 QYDDAVRIALLQLACLLVERASQHIHDGDANNKRQGNKLRRLMTFAWPCL 1800
1801 LSKSSVDPTARYHGHLLLSHIIARLAIHKKIVLQVFHSLLKGHALEARSI 1850
1851 VKQALDVLTPAMPLRMEDGNTMLTHWTKKIIVEEGHAMQQLFHILQLIIR 1900
1901 HYKVYFPVRHQLVQHLINYMQRLGFPPTASIEHKKLAVDLAEVIIKWELH 1950
1951 RIKDDRETKTDGTEEELIQESSVKRSGIDLVETRKKSFDIIRETTVQGVG 2000
2001 SHTKPDDILRSIDKSYCDTVLNFLIRLACQVNDPQAPILSPGESLSRRCV 2050
2051 MLLKMAMRPEIWPQPFDIKLNWLDKVLATVETPHHNLNNICTGIDFLTFL 2100
2101 TTILSPDQLVSIIRPVQRGLSLCIIHQNTRIVRLMHMFLTRIMAIFPPDT 2150
2151 QHKHEDLDLLYTAVSKMIAENLTSYEKSPQPNASSLFGTLMILKACTTNN 2200
2201 ASYIDRILVQFIRVLNHLTRDHINTIGGNTVISQSPDSNALPLELLVLSL 2250
2251 ELIKNRIFVMSVEIRKLFIGTILVSLIEKSTEVKIIKCIIKMLDEWIKTK 2300
2301 EPNVMTQVPSIREKSALLVKLMQNVEKKFTDEIELNIQFLEIINFIYRDE 2350
2351 ILKQTELTNKLEGAFLNGLRFQNPNVRSKFFEILDSSMRRRLHDRLLYII 2400
2401 CSQAWDTIGSHYWIKQCIELLILTANTMMQIQCSNEQFKIPSITSVIPVN 2450
2451 SSETQENSFVSFLSSHSESFDIIQTVDDKDDVYDIDLNADRKEDCQQILP 2500
2501 NRRVTLVELVYKQAEFLEANRNIRTDQMLVATSQLCHIDTQLAQSVWLSM 2550
2551 FPRIWSIFTEDQRCNITKELIPFLSSGTNVNQKDCHPSTLNTFVESLTKC 2600
2601 APPIYIPPNLLAYLGKSHNLWHRAILVLEDMAVNQSMQSKDIDGGENQFS 2650
2651 DLDVQQSNNIFDSLSKMYSSMHEEDLWAGLWLKFAHYPETNIAVSYEQMG 2700
2701 FFEEAQGAYDLAMTKFKQDLSNGVVNTYVNSELLLWENHWMRCAKELNQW 2750
2751 DILLDYAQTNKDKNMFLILESSWRVPDWNLMKIALAKTEQCYLKHYGFKI 2800
2801 NLYKGYLSILHQEERQTGNIERYVEIASSLCIREWRRLPNIVSHIHLPYL 2850
2851 QASQQIMELHEASQIHQGLAQSRNNSLHDMKAIVKTWRNRLPIISDDLSH 2900
2901 WSDIFTWRQHHYQIITQHLEQQSDQGSTMLGVHASAQAIISFGKIARKHN 2950
2951 LTGVCQETLSRIYTIPSVPIVDCFQKIRQQVKCYLQMPSTSGKNEINEAL 3000
3001 EVIESTNLKYFTGEMNAEFYALKGLLLAQIGRSEEAGKSFSVAAQLHDGL 3050
3051 TKAWAMWGDYMEQIFLKERKITLAVDALICYLQASRNQIESKTRKYIAKV 3100
3101 LWFLSYDNNTKILISTLEKHVAGIPPSYWLPWIPQLLCCLEQFEGDVILN 3150
3151 LLSQIGRLYPQAVYFPIRTLYLTLKIEQREKHKTAEQAVKSSCSNIDGTT 3200
3201 LSFGRGASHGNIPSINPIKATPPMWRCSKVMQLQREVHPTILSSLEGIVD 3250
3251 QMVWFRESWTEEVLRQLRQGLIKCYAIAFEKRDTVQHSTITPHTLHFVKK 3300
3301 LGSTFGIGIENVPGSVTSSISNSAASESLARRAQVTFQDPVFQKMKEQFT 3350
3351 NDFDFSKPGAMKLHNLISKLKTWIKVLETKVKKLPTSFLIEDKCRFLSNF 3400
3401 SQKTAEVELPGELLIPLSSHYYVRIARFMPRVEIVQKNNTAARRLYIRGT 3450
3451 NGKIYPYLVVLDSGLGDARREERVLQLKRMLNYYLEKQKETSRRFLNITV 3500
3501 PRVVPISPQMRLAEDNPNSISLLKIFKKCCQSMQVDYDMPIVKYYDRLSE 3550
3551 VQARGTPTTHTLLREIFSEIQWTMVPKTLLKHWALKTFLAATDFWHFRKM 3600
3601 LTLQLALAFLCEHALNLTRLNADMMYLHQDSGLMNISYFKFDVNDDKCQL 3650
3651 NQHRPVPFRLTPNVGEFITHFGITGPLSAAIVATARCFIQPNYKLSSILQ 3700
3701 TILRDEIIALQKKGFRECKLIEGSEDRYSDGNCMEHSVNIVNSAVDIIMT 3750
3751 RFNKISYFDSIENKKISVLVQSATNIDNLCRMDPAWHPWL 3790
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.