 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q8IXJ9 from www.uniprot.org...
The NucPred score for your sequence is 0.92 (see score help below)
1 MKDKQKKKKERTWAEAARLVLENYSDAPMTPKQILQVIEAEGLKEMRSGT 50
51 SPLACLNAMLHSNSRGGEGLFYKLPGRISLFTLKKDALQWSRHPATVEGE 100
101 EPEDTADVESCGSNEASTVSGENDVSLDETSSNASCSTESQSRPLSNPRD 150
151 SYRASSQANKQKKKTGVMLPRVVLTPLKVNGAHVESASGFSGCHADGESG 200
201 SPSSSSSGSLALGSAAIRGQAEVTQDPAPLLRGFRKPATGQMKRNRGEEI 250
251 DFETPGSILVNTNLRALINSRTFHALPSHFQQQLLFLLPEVDRQVGTDGL 300
301 LRLSSSALNNEFFTHAAQSWRERLADGEFTHEMQVRIRQEMEKEKKVEQW 350
351 KEKFFEDYYGQKLGLTKEESLQQNVGQEEAEIKSGLCVPGESVRIQRGPA 400
401 TRQRDGHFKKRSRPDLRTRARRNLYKKQESEQAGVAKDAKSVASDVPLYK 450
451 DGEAKTDPAGLSSPHLPGTSSAAPDLEGPEFPVESVASRIQAEPDNLARA 500
501 SASPDRIPSLPQETVDQEPKDQKRKSFEQAASASFPEKKPRLEDRQSFRN 550
551 TIESVHTEKPQPTKEEPKVPPIRIQLSRIKPPWVVKGQPTYQICPRIIPT 600
601 TESSCRGWTGARTLADIKARALQVRGARGHHCHREAATTAIGGGGGPGGG 650
651 GGGATDEGGGRGSSSGDGGEACGHPEPRGGPSTPGKCTSDLQRTQLLPPY 700
701 PLNGEHTQAGTAMSRARREDLPSLRKEESCLLQRATVGLTDGLGDASQLP 750
751 VAPTGDQPCQALPLLSSQTSVAERLVEQPQLHPDVRTECESGTTSWESDD 800
801 EEQGPTVPADNGPIPSLVGDDTLEKGTGQALDSHPTMKDPVNVTPSSTPE 850
851 SSPTDCLQNRAFDDELGLGGSCPPMRESDTRQENLKTKALVSNSSLHWIP 900
901 IPSNDEVVKQPKPESREHIPSVEPQVGEEWEKAAPTPPALPGDLTAEEGL 950
951 DPLDSLTSLWTVPSRGGSDSNGSYCQQVDIEKLKINGDSEALSPHGESTD 1000
1001 TASDFEGHLTEDSSEADTREAAVTKGSSVDKDEKPNWNQSAPLSKVNGDM 1050
1051 RLVTRTDGMVAPQSWVSRVCAVRQKIPDSLLLASTEYQPRAVCLSMPGSS 1100
1101 VEATNPLVMQLLQGSLPLEKVLPPAHDDSMSESPQVPLTKDQSHGSLRMG 1150
1151 SLHGLGKNSGMVDGSSPSSLRALKEPLLPDSCETGTGLARIEATQAPGAP 1200
1201 QKNCKAVPSFDSLHPVTNPITSSRKLEEMDSKEQFSSFSCEDQKEVRAMS 1250
1251 QDSNSNAAPGKSPGDLTTSRTPRFSSPNVISFGPEQTGRALGDQSNVTGQ 1300
1301 GKKLFGSGNVAATLQRPRPADPMPLPAEIPPVFPSGKLGPSTNSMSGGVQ 1350
1351 TPREDWAPKPHAFVGSVKNEKTFVGGPLKANAENRKATGHSPLELVGHLE 1400
1401 GMPFVMDLPFWKLPREPGKGLSEPLEPSSLPSQLSIKQAFYGKLSKLQLS 1450
1451 STSFNYSSSSPTFPKGLAGSVVQLSHKANFGASHSASLSLQMFTDSSTVE 1500
1501 SISLQCACSLKAMIMCQGCGAFCHDDCIGPSKLCVLCLVVR 1541
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.