 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q8IYW2 from www.uniprot.org...
The NucPred score for your sequence is 0.90 (see score help below)
1 MDLVITQELARAESQQDAASLKKAYELIKSANLGKSEFDPSESFSPDLFV 50
51 LCAEQALKMRQPEVSEDCIQMYFKVKAPITQFLGRAHLCRAQMCAPKSAE 100
101 NLEEFENCVTEYMKAINFAKGEPRYYFLVYNASVLYWQMVRPFLKPGYRH 150
151 HLIPSLSQIINVLSQTEEEDKEWRAELMLELLECYLQAGRKEEAARFCST 200
201 AAPFIKSHVPQKYRQIFSVMVRHELMDELQLKEEKKNSISLSVTFYINML 250
251 KAKAEQNDLPGDISVILRKAYRHLGHYNHQRFPSISEEKMLLLFELARFS 300
301 LTLKCMEISSACLSDLKKMESKDPGKLIEMECLECESEALRLESKMKVYN 350
351 RAAVEAQLDIIQRLDVALQRAVRLGDPRVIHVVCATQWNTCLPLLQHNLR 400
401 HHLRKPLAGVADVLEKLDSLMTLLRCQVHMEMAQIEEDEDRLEPATEHLR 450
451 KAARLDSLGLYRDRIQMASTRLRLCTTLYQAPERAEDKAIMAVEQAKKAT 500
501 PKDSVRKKRALLVNAGLALAPDAFQIVLDSENEAKVSTGKNRGRFTYLCA 550
551 KAWHHTVSVDKAAGHLRRLGNENDKERIQIWAELAKVARKQGVWDVCRTA 600
601 SRFCLLYDNVKVKKLRLRRGKKKRGRDGSVQDTWSQPEVVLQRQVCPDLL 650
651 RKFAEVGFIHAEATVHLLRSEGVELNDRAIPPEDLSQHPAGYVPEPPEVN 700
701 AEWITYRTWIESLSRCAMNNWLRSAEIGQEIQEAWIVQNAVVYVLNHNHH 750
751 LILAGRQKELVDALYHLLSIVKATGHSGDPVMLVTLCNTLARGLIISWIP 800
801 VQAAEKSRKFMRPNAFHSPLDAGATSEIKTAVEVCEFALNLTNGSAPEET 850
851 VPTGTRQQLIATWVKAKQLLQQQIGPRLGTEEQGTNEDVSSVTRVLVALE 900
901 MYSCNGLGLMDFTVPSLAQLVKMASECNWSDPLVELQTLTRLTHFAHAAR 950
951 DHETTMACAHRALEMGIKYLKKFGPEESRLVAEMLCTATAIQGRSIMENL 1000
1001 KGRKQLRLVAAKAFTESARFGGIAGSSALVMLAARHYWNAWLPLLSSAVY 1050
1051 RKKAKGALKRLIGIINKTEARKQEKGKTLLLHQWPTADFQGGGTTEGYFL 1100
1101 PGAEDDLALRAALYGLLFHSHADQDDWEGGLKVLDEAVQVLPRTAHRLLI 1150
1151 FKHMVIVKAKLGQNFSMEIQKFKAESEDYLARMWHRLALNSPSVSGELAC 1200
1201 YNNAIQALQKPEMEWQKVEYLMEFGQWLHHRHFPLEDVVFHLRWAVEILL 1250
1251 AMKPPGDVPEPQPTPDGEYVAVEMPPRSPVSEAEEAVSLEQLRSVRQLEA 1300
1301 LARVHILLALVLSPGAEGYEDCCLAAYAFFRHIWQVSLMTAGKSVLENRP 1350
1351 LAATSSHLLLPKKEKENERSKEKEKERSKEKENERSKEKDKEKGKEEKVK 1400
1401 EPKQSQSPAPIKQLEDLPMSIEEWASYSCPEEVLSVLKQDRSDSTVNPSS 1450
1451 IQKPTYSLYFLDHLVKALQKMCLHELTVPVLQLGVLISDSVVGSKGLSDL 1500
1501 YHLRLAHACSELKLREAAARHEEAVGQVCVSELEQASCRKEIALKKEKNK 1550
1551 EPLLEESLPALNEQTLPVQPGEIKPLDAKDKILKMNGETGRDLDGTSFPH 1600
1601 LWMLKAEVLLEMNLYQPARLLLSEAYLAFQELDEPCAEAQCLLLLAQLAN 1650
1651 KEKNYGQAKKMIAQAQHLGGSEEFWYNSTLTLAEALLSMEHSGREATVCH 1700
1701 IFQKLINAFKILKKERPNRLPLLEFMITDLEARCLSLRVRVAQHSAVTEP 1750
1751 TECSLLLKEMDDGLLEIERKFIDCGCKENCVDVKLERAKIKRLRAQNEKD 1800
1801 EEQKTAYYLEAYGLAQGAVAEEEGRLHSIQGLYGLAQGAMAEEEGRLHSV 1850
1851 QGLLSLQDLQNVNTPLMRKLARLKLGLVEMALDMLQFIWEEAHGQQSEQG 1900
1901 SLEKLLADYLQNTSDYTSVGLQWFTLKRTLAHGALAQLGSLQPLSVGCVE 1950
1951 IRARLLGLAGRALHLLAMQADPVHPTCYWEAGPSVGAKLSGLKSLELEVE 2000
2001 EEGATKSSRDPPASRAAPEEHCRRGEDLKRRMVLAQQYLAQASEVLLQCL 2050
2051 QVALGSGLLDVAAAASLEMVECVGTLDPATTCQFLALSQSCSASETMRDV 2100
2101 LLAATANTSSSQLAALLQLQHQLRCQDRTTTSLGARVEQRLAAVSKAWQN 2150
2151 LCVTEQHFNLLNEMPPTFWILFLHLSGDRSRLYGAAYEKPKFITAAKGKV 2200
2201 QAVGGSCKVMRLAISPTAFSHLLACAQQFRKQTQAQVYSEDMALNIGSEP 2250
2251 EGLQVEEKERPVQRLSSVLGPLEELLQPLFPLLSLSKARVQTPAVVADSG 2300
2301 KSKGKDKERKTSTGQHSTVQPEVADKIVLVADRHLLELPLEGLSVFDEGT 2350
2351 ISSVSREFSLQMLWNRLHKEETEGGVKKEGRSRDPKKRSLAKKGRKGSIP 2400
2401 RTIPPDCIIVDSDNFKFVVDPYEEAQGPEMLTPVSITQDILERFQDTFTS 2450
2451 RWAGHLGSKHFPSQAQWEQALGSCSGFFFYGMESFLSHILVERLVAMNLQ 2500
2501 ECQVAVLLDLARSYQSLKRHMESVEHRRSVGRWEANWRNSASPSEDEWRR 2550
2551 GGEPRRGFSDLEGQAAAAPKLRAPSHHAQLGPVWAAAPSHRVVQAWTCLP 2600
2601 SAAGAPALASALGSAPLPTHPHLPAPIPSSQLALPFLGLSPALGAASARD 2650
2651 PPPATSRKAAAWTSSSACLCAPWGLRRGWSCVSSRGQDKGGLPLAALVLS 2700
2701 CLDQKTIQTVSLFLI 2715
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.