SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q8N2C7 from www.uniprot.org...

The NucPred score for your sequence is 0.99 (see score help below)

   1  MVKRKSSEGQEQDGGRGIPLPIQTFLWRQTSAFLRPKLGKQYEASCVSFE    50
51 RVLVENKLHGLSPALSEAIQSISRWELVQAALPHVLHCTATLLSNRNKLG 100
101 HQDKLGVAETKLLHTLHWMLLEAPQDCNNERFGGTDRGSSWGGSSSAFIH 150
151 QVENQGSPGQPCQSSSNDEEENNRRKIFQNSMATVELFVFLFAPLVHRIK 200
201 ESDLTFRLASGLVIWQPMWEHRQPGVSGFTALVKPIRNIITAKRSSPINS 250
251 QSRTCESPNQDARHLEGLQVVCETFQSDSISPKATISGCHRGNSFDGSLS 300
301 SQTSQERGPSHSRASLVIPPCQRSRYATYFDVAVLRCLLQPHWSEEGTQW 350
351 SLMYYLQRLRHMLEEKPEKPPEPDIPLLPRPRSSSMVAAAPSLVNTHKTQ 400
401 DLTMKCNEEEKSLSSEAFSKVSLTNLRRSAVPDLSSDLGMNIFKKFKSRK 450
451 EDRERKGSIPFHHTGKRRPRRMGVPFLLHEDHLDVSPTRSTFSFGSFSGL 500
501 GEDRRGIEKGGWQTTILGKLTRRGSSDAATEMESLSARHSHSHHTLVSDL 550
551 PDPSNSHGENTVKEVRSQISTITVATFNTTLASFNVGYADFFNEHMRKLC 600
601 NQVPIPEMPHEPLACANLPRSLTDSCINYSYLEDTEHIDGTNNFVHKNGM 650
651 LDLSVVLKAVYLVLNHDISSRICDVALNIVECLLQLGVVPCVEKNRKKSE 700
701 NKENETLEKRPSEGAFQFKGVSGSSTCGFGGPAVSGAGDGGGEEGGGGDG 750
751 GGGGGDGGGGGGGGGGPYEKNDKNQEKDESTPVSNHRLALTMLIKIVKSL 800
801 GCAYGCGEGHRGLSGDRLRHQVFRENAQNCLTKLYKLDKMQFRQTMRDYV 850
851 NKDSLNNVVDFLHALLGFCMEPVTDNKAGFGNNFTTVDNKSTAQNVEGII 900
901 VSAMFKSLITRCASTTHELHSPENLGLYCDIRQLVQFIKEAHGNVFRRVA 950
951 LSALLDSAEKLAPGKKVEENEQESKPAGSKRSEAGSIVDKGQVSSAPEEC 1000
1001 RSFMSGRPSQTPEHDEQMQGANLGRKDFWRKMFKSQSAASDTSSQSEQDT 1050
1051 SECTTAHSGTTSDRRARSRSRRISLRKKLKLPIGKRNWLKRSSLSGLADG 1100
1101 VEDLLDISSVDRLSFIRQSSKVKFTSAVKLSEGGPGSGMENGRDEEENFF 1150
1151 KRLGCHSFDDHLSPNQDGGKSKNVVNLGAIRQGMKRFQFLLNCCEPGTIP 1200
1201 DASILAAALDLEAPVVARAALFLECARFVHRCNRGNWPEWMKGHHVNITK 1250
1251 KGLSRGRSPIVGNKRNQKLQWNAAKLFYQWGDAIGVRLNELCHGESESPA 1300
1301 NLLGLIYDEETKRRLRKEDEEEDFLDDSTVNPSKCGCPFALKMAACQLLL 1350
1351 EITTFLRETFSCLPRPRTEPLVDLESCRLRLDPELDRHRYERKISFAGVL 1400
1401 DENEDSKDSLHSSSHTLKSDAGVEEKKEGSPWSASEPSIEPEGMSNAGAE 1450
1451 ENYHRNMSWLHVMILLCNQQSFICTHVDYCHPHCYLHHSRSCARLVRAIK 1500
1501 LLYGDSVDSLRESSNISSVALRGKKQKECSDKSCLRTPSLKKRVSDANLE 1550
1551 GKKDSGMLKYIRLQVMSLSPAPLSLLIKAAPILTEEMYGDIQPAAWELLL 1600
1601 SMDEHMAGAAAAMFLLCAVKVPEAVSDMLMSEFHHPETVQRLNAVLKFHT 1650
1651 LWRFRYQVWPRMEEGAQQIFKIPPPSINFTLPSPVLGMPSVPMFDPPWVP 1700
1701 QCSGSVQDPINEDQSKSFSARAVSRSHQRAEHILKNLQQEEEKKRLGREA 1750
1751 SLITAIPITQEACYEPTCTPNSEPEEEVEEVTNLASRRLSVSPSCTSSTS 1800
1801 HRNYSFRRGSVWSVRSAVSAEDEEHTTEHTPNHHVPQPPQAVFPACICAA 1850
1851 VLPIVHLMEDGEVREDGVAVSAVAQQVLWNCLIEDPSTVLRHFLEKLTIS 1900
1901 NRQDELMYMLRKLLLNIGDFPAQTSHILFNYLVGLIMYFVRTPCEWGMDA 1950
1951 ISATLTFLWEVVGYVEGLFFKDLKQTMKKEQCEVKLLVTASMPGTKTLVV 2000
2001 HGQNECDIPTQLPVHEDTQFEALLKECLEFFNIPESQSTHYFLMDKRWNL 2050
2051 IHYNKTYVRDIYPFRRSVSPQLNLVHMHPEKGQELIQKQVFTRKLEEVGR 2100
2101 VLFLISLTQKIPTAHKQSHVSMLQEDLLRLPSFPRSAIDAEFSLFSDPQA 2150
2151 GKELFGLDTLQKSLWIQLLEEMFLGMPSEFPWGDEIMLFLNVFNGALILH 2200
2201 PEDSALLRQYAATVINTAVHFNHLFSLSGYQWILPTMLQVYSDYESNPQL 2250
2251 RQAIEFACHQFYILHRKPFVLQLFASVAPLLEFPDAANNGPSKGVSAQCL 2300
2301 FDLLQSLEGETTDILDILELVKAEKPLKSLDFCYGNEDLTFSISEAIKLC 2350
2351 VTVVAYAPESFRSLQMLMVLEALVPCYLQKLKRQTSQVETVPAAREEIAA 2400
2401 TAALATSLQALLYSVEVLTRPMTAPQMSRCDQGHKGTTTANHTMSSGVNT 2450
2451 RYQEQGAKLHFIRENLHLLEEGQGIPREELDERIAREEFRRPRESLLNIC 2500
2501 TEFYKHCGPRLKILQNLAGEPRVIALELLDVKSHMRLAEIAHSLLKLAPY 2550
2551 DTQTMESRGLRRYIMEMLPITDWTAEAVRPALILILKRLDRMFNKIHKMP 2600
2601 TLRRQVEWEPASNLIEGVCLTLQRQPIISFLPHLRSLINVCVNLVMGVVG 2650
2651 PSSVADGLPLLHLSPYLSPPLPFSTAVVRLVALQIQALKEDFPLSHVISP 2700
2701 FTNQERREGMLLNLLIPFVLTVGSGSKDSPWLEQPEVQLLLQTVINVLLP 2750
2751 PRIISTSRSKNFMLESSPAHCSTPGDAGKDLRREGLAESTSQAAYLALKV 2800
2801 ILVCFERQLGSQWYWLSLQVKEMALRKVGGLALWDFLDFIVRTRIPIFVL 2850
2851 LRPFIQCKLLAQPAENHEELSARQHIADQLERRFIPRPLCKSSLIAEFNS 2900
2901 ELKILKEAVHSGSAYQGKTSISTVGTSTSAYRLSLATMSRSNTGTGTVWE 2950
2951 QDSEPSQQASQDTLSRTDEEDEENDSISMPSVVSEQEAYLLSAIGRRRFS 3000
3001 SHVSSMSVPQAEVGMLPSQSEPNVLDDSQGLAAEGSLSRVASIQSEPGQQ 3050
3051 NLLVQQPLGRKRGLRQLRRPLLSRQKTQTEPRNRQGARLSTTRRSIQPKT 3100
3101 KPSADQKRSVTFIEAQPEPAAAPTDALPATGQLQGCSPAPSRKPEAMDEP 3150
3151 VLTSSPAIVVADLHSVSPKQSENFPTEEGEKEEDTEAQGATAHSPLSAQL 3200
3201 SDPDDFTGLETSSLLQHGDTVLHISEENGMENPLLSSQFTFTPTELGKTD 3250
3251 AVLDESHV 3258

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.