SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q8TCU4 from www.uniprot.org...

The NucPred score for your sequence is 0.96 (see score help below)

   1  MEPEDLPWPGELEEEEEEEEEEEEEEEEAAAAAAANVDDVVVVEEVEEEA    50
51 GRELDSDSHYGPQHLESIDDEEDEEAKAWLQAHPGRILPPLSPPQHRYSE 100
101 GERTSLEKIVPLTCHVWQQIVYQGNSRTQISDTNVVCLETTAQRGSGDDQ 150
151 KTESWHCLPQEMDSSQTLDTSQTRFNVRTEDTEVTDFPSLEEGILTQSEN 200
201 QVKEPNRDLFCSPLLVIQDSFASPDLPLLTCLTQDQEFAPDSLFHQSELS 250
251 FAPLRGIPDKSEDTEWSSRPSEVSEALFQATAEVASDLASSRFSVSQHPL 300
301 IGSTAVGSQCPFLPSEQGNNEETISSVDELKIPKDCDRYDDLCSYMSWKT 350
351 RKDTQWPENNLADKDQVSVATSFDITDENIATKRSDHFDAARSYGQYWTQ 400
401 EDSSKQAETYLTKGLQGKVESDVITLDGLNENAVVCSERVAELQRKPTRE 450
451 SEYHSSDLRMLRMSPDTVPKAPKHLKAGDTSKGGIAKVTQSNLKSGITTT 500
501 PVDSDIGSHLSLSLEDLSQLAVSSPLETTTGQHTDTLNQKTLADTHLTEE 550
551 TLKVTAIPEPADQKTATPTVLSSSHSHRGKPSIFYQQGLPDSHLTEEALK 600
601 VSAAPGLADQTTGMSTLTSTSYSHREKPGTFYQQELPESNLTEEPLEVSA 650
651 APGPVEQKTGIPTVSSTSHSHVEDLLFFYRQTLPDGHLTDQALKVSAVSG 700
701 PADQKTGTATVLSTPHSHREKPGIFYQQEFADSHQTEETLTKVSATPGPA 750
751 DQKTEIPAVQSSSYSQREKPSILYPQDLADSHLPEEGLKVSAVAGPADQK 800
801 TGLPTVPSSAYSHREKLLVFYQQALLDSHLPEEALKVSAVSGPADGKTGT 850
851 PAVTSTSSASSSLGEKPSAFYQQTLPNSHLTEEALKVSIVPGPGDQKTGI 900
901 PSAPSSFYSHREKPIIFSQQTLPDFLFPEEALKVSAVSVLAAQKTGTPTV 950
951 SSNSHSHSEKSSVFYQQELPDSDLPRESLKMSAIPGLTDQKTVPTPTVPS 1000
1001 GSFSHREKPSIFYQQEWPDSYATEKALKVSTGPGPADQKTEIPAVQSSSY 1050
1051 PQREKPSVLYPQVLSDSHLPEESLKVSAFPGPADQMTDTPAVPSTFYSQR 1100
1101 EKPGIFYQQTLPESHLPKEALKISVAPGLADQKTGTPTVTSTSYSQHREK 1150
1151 PSIFHQQALPGTHIPEEAQKVSAVTGPGNQKTWIPRVLSTFYSQREKPGI 1200
1201 FYQQTLPGSHIPEEAQKVSPVLGPADQKTGTPTPTSASYSHTEKPGIFYQ 1250
1251 QVLPDNHPTEEALKISVASEPVDQTTGTPAVTSTSYSQYREKPSIFYQQS 1300
1301 LPSSHLTEEAKNVSAVPGPADQKTVIPILPSTFYSHTEKPGVFYQQVLPH 1350
1351 SHPTEEALKISVASEPVDQTTGTPTVTSTSYSQHTEKPSIFYQQSLPGSH 1400
1401 LTEEAKNVSAVPGPGDRKTGIPTLPSTFYSHTEKPGSFYQQVLPHSHLPE 1450
1451 EALEVSVAPGPVDQTIGTPTVTSPSSSFGEKPIVIYKQAFPEGHLPEESL 1500
1501 KVSVAPGPVGQTTGAPTITSPSYSQHRAKSGSFYQLALLGSQIPEEALRV 1550
1551 SSAPGPADQTTGIPTITSTSYSFGEKPIVNYKQAFPDGHLPEEALKVSIV 1600
1601 SGPTEKKTDIPAGPLGSSALGEKPITFYRQALLDSPLNKEVVKVSAAPGP 1650
1651 ADQKTETLPVHSTSYSNRGKPVIFYQQTLSDSHLPEEALKVPPVPGPDAQ 1700
1701 KTETPSVSSSLYSYREKPIVFYQQALPDSELTQEALKVSAVPQPADQKTG 1750
1751 LSTVTSSFYSHTEKPNISYQQELPDSHLTEEALKVSNVPGPADQKTGVST 1800
1801 VTSTSYSHREKPIVSYQRELPHFTEAGLKILRVPGPADQKTGINILPSNS 1850
1851 YPQREHSVISYEQELPDLTEVTLKAIGVPGPADQKTGIQIASSSSYSNRE 1900
1901 KASIFHQQELPDVTEEALNVFVVPGQGDRKTEIPTVPLSYYSRREKPSVI 1950
1951 SQQELPDSHLTEEALKVSPVSIPAEQKTGIPIGLSSSYSHSHKEKLKIST 2000
2001 VHIPDDQKTEFPAATLSSYSQIEKPKISTVIGPNDQKTPSQTAFHSSYSQ 2050
2051 TVKPNILFQQQLPDRDQSKGILKISAVPELTDVNTGKPVSLSSSYFHREK 2100
2101 SNIFSPQELPGSHVTEDVLKVSTIPGPAGQKTVLPTALPSSFSHREKPDI 2150
2151 FYQKDLPDRHLTEDALKISSALGQADQITGLQTVPSGTYSHGENHKLVSE 2200
2201 HVQRLIDNLNSSDSSVSSNNVLLNSQADDRVVINKPESAGFRDVGSEEIQ 2250
2251 DAENSAKTLKEIRTLLMEAENMALKRCNFPAPLARFRDISDISFIQSKKV 2300
2301 VCFKEPSSTGVSNGDLLHRQPFTEESPSSRCIQKDIGTQTNLKCRRGIEN 2350
2351 WEFISSTTVRSPLQEAESKVSMALEETLRQYQAAKSVMRSEPEGCSGTIG 2400
2401 NKIIIPMMTVIKSDSSSDASDGNGSCSWDSNLPESLESVSDVLLNFFPYV 2450
2451 SPKTSITDSREEEGVSESEDGGGSSVDSLAAHVKNLLQCESSLNHAKEIL 2500
2501 RNAEEEESRVRAHAWNMKFNLAHDCGYSISELNEDDRRKVEEIKAELFGH 2550
2551 GRTTDLSKGLQSPRGMGCKPEAVCSHIIIESHEKGCFRTLTSEHPQLDRH 2600
2601 PCAFRSAGPSEMTRGRQNPSSCRAKHVNLSASLDQNNSHFKVWNSLQLKS 2650
2651 HSPFQNFIPDEFKISKGLRMPFDEKMDPWLSELVEPAFVPPKEVDFHSSS 2700
2701 QMPSPEPMKKFTTSITFSSHRHSKCISNSSVVKVGVTEGSQCTGASVGVF 2750
2751 NSHFTEEQNPPRDLKQKTSSPSSFKMHSNSQDKEVTILAEGRRQSQKLPV 2800
2801 DFERSFQEEKPLERSDFTGSHSEPSTRANCSNFKEIQISDNHTLISMGRP 2850
2851 SSTLGVNRSSSRLGVKEKNVTITPDLPSCIFLEQRELFEQSKAPRADDHV 2900
2901 RKHHSPSPQHQDYVAPDLPSCIFLEQRELFEQCKAPYVDHQMRENHSPLP 2950
2951 QGQDSIASDLPSPISLEQCQSKAPGVDDQMNKHHFPLPQGQDCVVEKNNQ 3000
3001 HKPKSHISNINVEAKFNTVVSQSAPNHCTLAASASTPPSNRKALSCVHIT 3050
3051 LCPKTSSKLDSGTLDERFHSLDAASKARMNSEFNFDLHTVSSRSLEPTSK 3100
3101 LLTSKPVAQDQESLGFLGPKSSLDFQVVQPSLPDSNTITQDLKTIPSQNS 3150
3151 QIVTSRQIQVNISDFEGHSNPEGTPVFADRLPEKMKTPLSAFSEKLSSDA 3200
3201 VTQITTESPEKTLFSSEIFINAEDRGHEIIEPGNQKLRKAPVKFASSSSV 3250
3251 QQVTFSRGTDGQPLLLPYKPSGSTKMYYVPQLRQIPPSPDSKSDTTVESS 3300
3301 HSGSNDAIAPDFPAQVLGTRDDDLSATVNIKHKEGIYSKRVVTKASLPVG 3350
3351 EKPLQNENADASVQVLITGDENLSDKKQQEIHSTRAVTEAAQAKEKESLQ 3400
3401 KDTADSSAAAAAEHSAQVGDPEMKNLPDTKAITQKEEIHRKKTVPEEAWP 3450
3451 NNKESLQINIEESECHSEFENTTRSVFRSAKFYIHHPVHLPSDQDICHES 3500
3501 LGKSVFMRHSWKDFFQHHPDKHREHMCLPLPYQNMDKTKTDYTRIKSLSI 3550
3551 NVNLGNKEVMDTTKSQVRDYPKHNGQISDPQRDQKVTPEQTTQHTVSLNE 3600
3601 LWNKYRERQRQQRQPELGDRKELSLVDRLDRLAKILQNPITHSLQVSEST 3650
3651 HDDSRGERSVKEWSGRQQQRNKLQKKKRFKSLEKSHKNTGELKKSKVLSH 3700
3701 HRAGRSNQIKIEQIKFDKYILSKQPGFNYISNTSSDCRPSEESELLTDTT 3750
3751 TNILSGTTSTVESDILTQTDREVALHERSSSVSTIDTARLIQAFGHERVC 3800
3801 LSPRRIKLYSSITNQQRRYLEKRSKHSKKVLNTGHPLVTSEHTRRRHIQV 3850
3851 ANHVISSDSISSSASSFLSSNSTFCNKQNVHMLNKGIQAGNLEIVNGAKK 3900
3901 HTRDVGITFPTPSSSEAKLEENSDVTSWSEEKREEKMLFTGYPEDRKLKK 3950
3951 NKKNSHEGVSWFVPVENVESRSKKENVPNTCGPGISWFEPITKTRPWREP 4000
4001 LREQNCQGQHLDGRGYLAGPGREAGRDLLRPFVRATLQESLQFHRPDFIS 4050
4051 RSGERIKRLKLIVQERKLQSMLQTERDALFNIDRERQGHQNRMCPLPKRV 4100
4101 FLAIQKNKPISKKEMIQRSKRIYEQLPEVQKKREEEKRKSEYKSYRLRAQ 4150
4151 LYKKRVTNQLLGRKVPWD 4168

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.