 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q8TDX9 from www.uniprot.org...
The NucPred score for your sequence is 0.80 (see score help below)
1 MAEEAAQNISDDQERCLQAACCLSFGGELSVSTDKSWGLHLCSCSPPGGG 50
51 LWVEVYANHVLLMSDGKCGCPWCALNGKAEDRESQSPSSSASRQKNIWKT 100
101 TSEAALSVVNEKTQAVVNEKTQAPLDCDNSADRIPHKPFIIIARAWSSGG 150
151 PRFHHRRLCATGTADSTFSALLQLQGTTSAAAPCSLKMEASCCVLRLLCC 200
201 AEDVATGLLPGTVTMETPTKVARPTQTSSQRVPLWPISHFPTSPRSSHGL 250
251 PPGIPRTPSFTASQSGSEILYPPTQHPPVAILARNSDNFMNPVLNCSLEV 300
301 EARAPPNLGFRVHMASGEALCLMMDFGDSSGVEMRLHNMSEAMAVTAYHQ 350
351 YSKGIFFHLLHFQLDMSTYKEAETQNTTLNVYLCQSENSCLEDSDPSNLG 400
401 YELISAFVTKGVYMLKAVIYNEFHGTEVELGPYYVEIGHEAVSAFMNSSS 450
451 VHEDEVLVFADSQVNQKSTVVIHHFPSIPSYNVSFISQTQVGDSQAWHSM 500
501 TVWYKMQSVSVYTNGTVFATDTDITFTAVTKETIPLEFEWYFGEDPPVRT 550
551 TSRSIKKRLSIPQWYRVMVKASNRMSSVVSEPHVIRVQKKIVANRLTSPS 600
601 SALVNASVAFECWINFGTDVAYLWDFGDGTVSLGSSSSSHVYSREGEFTV 650
651 EVLAFNNVSASTLRQQLFIVCEPCQPPLVKNMGPGKVQIWRSQPVRLGVT 700
701 FEAAVFCDISQGLSYTWNLMDSEGLPVSLPAAVDTHRQTLILPSHTLEYG 750
751 NYTALAKVQIEGSVVYSNYCVGLEVRAQAPVSVISEGTHLFFSRTTSSPI 800
801 VLRGTQSFDPDDPGATLRYHWECATAGSPAHPCFDSSTAHQLDAAAPTVS 850
851 FEAQWLSDSYDQFLVMLRVSSGGRNSSETRVFLSPYPDSAFRFVHISWVS 900
901 FKDTFVNWNDELSLQAMCEDCSEIPNLSYSWDLFLVNATEKNRIEVPFCR 950
951 VVGLLGSLGLGAISESSQLNLLPTEPGTADPDATTTPFSREPSPVTLGQP 1000
1001 ATSAPRGTPTEPMTGVYWIPPAGDSAVLGEAPEEGSLDLEPGPQSKGSLM 1050
1051 TGRSERSQPTHSPDPHLSDFEAYYSDIQEAIPSGGRQPAKDTSFPGSGPS 1100
1101 LSAEESPGDGDNLVDPSLSAGRAEPVLMIDWPKALLGRAVFQGYSSSGIT 1150
1151 EQTVTIKPYSLSSGETYVLQVSVASKHGLLGKAQLYLTVNPAPRDMACQV 1200
1201 QPHHGLEAHTVFSVFCMSGKPDFHYEFSYQIGNTSKHTLYHGRDTQYYFV 1250
1251 LPAGEHLDNYKVMVSTEITDGKGSKVQPCTVVVTVLPRYHGNDCLGEDLY 1300
1301 NSSLKNLSTLQLMGSYTEIRNYITVITRILSRLSKEDKTASCNQWSRIQD 1350
1351 ALISSVCRLAFVDQEEMIGSVLMLRDLVSFSNKLGFMSAVLILKYTRALL 1400
1401 AQGQFSGPFVIDKGVRLELIGLISRVWEVSEQENSKEEVYRHEEGITVIS 1450
1451 DLLLGCLSLNHVSTGQMEFRTLLHYNLQSSVQSLGSVQVHLPGDLAGHSP 1500
1501 AGAETQSPCYISQLILFKKNPYPGSQAPGQIGGVVGLNLYTCSSRRPINR 1550
1551 QWLRKPVMVEFGEEDGLDNRRNKTTFVLLRDKVNLHQFTELSENPQESLQ 1600
1601 IEIEFSKPVTRAFPVMLLVRFSEKPTPSDFLVKQIYFWDESIVQIYIPAA 1650
1651 SQKDASVGYLSLLDADYDRKPPNRYLAKAVNYTVHFQWIRCLFWDKREWK 1700
1701 SERFSPQPGTSPEKVNCSYHRLAAFALLRRKLKASFEVSDISKLQSHPEN 1750
1751 LLPSIFIMGSVILYGFLVAKSRQVDHHEKKKAGYIFLQEASLPGHQLYAV 1800
1801 VIDTGFRAPARLTSKVYIVLCGDNGLSETKELSCPEKPLFERNSRHTFIL 1850
1851 SAPAQLGLLRKIRLWHDSRGPSPGWFISHVMVKELHTGQGWFFPAQCWLS 1900
1901 AGRHDGRVERELTCLQGGLGFRKLFYCKFTEYLEDFHVWLSVYSRPSSSR 1950
1951 YLHTPRLTVSFSLLCVYACLTALVAAGGQEQPHLDVSPTLGSFRVGLLCT 2000
2001 LLASPGAQLLSLLFRLSKEAPGSARVEPHSPLRGGAQTEAPHGPNSWGRI 2050
2051 PDAQEPRKQPASAILSGSGRAQRKAASDNGTACPAPKLQVHGADHSRTSL 2100
2101 MGKSHCCPPHTQAPSSGLEGLMPQWSRALQPWWSSAVWAICGTASLACSL 2150
2151 GTGFLAYRFGQEQCVQWLHLLSLSVVCCIFITQPLMVCLMALGFAWKRRA 2200
2201 DNHFFTESLCEATRDLDSELAERSWTRLPFSSSCSIPDCAGEVEKVLAAR 2250
2251 QQARHLRWAHPPSKAQLRGTRQRMRRESRTRAALRDISMDILMLLLLLCV 2300
2301 IYGRFSQDEYSLNQAIRKEFTRNARNCLGGLRNIADWWDWSLTTLLDGLY 2350
2351 PGGTPSARVPGAQPGALGGKCYLIGSSVIRQLKVFPRHLCKPPRPFSALI 2400
2401 EDSIPTCSPEVGGPENPYLIDPENQNVTLNGPGGCGTREDCVLSLGRTRT 2450
2451 EAHTALSRLRASMWIDRSTRAVSVHFTLYNPPTQLFTSVSLRVEILPTGS 2500
2501 LVPSSLVESFSIFRSDSALQYHLMLPQLVFLALSLIHLCVQLYRMMDKGV 2550
2551 LSYWRKPRNWLELSVVGVSLTYYAVSGHLVTLAGDVTNQFHRGLCRAFMD 2600
2601 LTLMASWNQRARWLRGILLFLFTLKCVYLPGIQNTMASCSSMMRHSLPSI 2650
2651 FVAGLVGALMLAALSHLHRFLLSMWVLPPGTFTDAFPGLLFHFPRRSQKD 2700
2701 CLLGLSKSDQRAMACYFGILLIVSATLCFGMLRGFLMTLPQKRKSFQSKS 2750
2751 FVRLKDVTAYMWEKVLTFLRLETPKLEEAEMVENHNYYLDEFANLLDELL 2800
2801 MKINGLSDSLQLPLLEKTSNNTGEARTEESPLVDISSYQAAEPADIKDF 2849
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.