SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q8WN22 from www.uniprot.org...

The NucPred score for your sequence is 0.95 (see score help below)

   1  MFSSSQIPRVFLIPSRRELRLVLQLQESLSAGDRCSAAMASYQLTRGLGQ    50
51 ECVLSSDPAVLALQTSLVFSKDFGLLVFVRKSLSIDEFRDCREEVLKFLY 100
101 IFLEKIGQKITPYSLDIKTTCTSVYTKDKAAKCKIPALDLLIKLLQTLRS 150
151 SRLMDEFSIGELFNKFYGELALKTKIQDTVLEKIYELLGVLAEVHPSEMI 200
201 NNSEKLFRAFLGELKIQMTSAIREPKLPVLAGCLKGLSSLMCNFTKSMEE 250
251 DPQTSREIFDFALKAIRPQIDLKRYAVPLAGLCLFTLHASQFSTCLLDNY 300
301 VSLFEVLSKWCSHTNVEMKKAAHSALESFLKQVSFMVAKDAEMHKSKLQY 350
351 FMEQFYGIIRNMDSNSKDLSIAIRGYGLFAGPCKVINAKDVDFMYIELIQ 400
401 RCKQLFLTQIDTVDDHVYHMPSFLQSIASVLLYLDRVPEVYTPVLEHLMV 450
451 AQIDSFPQYSPKMQSVCCKALVKVFLALGGKGPVLWNCISTVVHQGLIRI 500
501 CSKPVILQKGVESEPEEYRASGEVRTGKWKVPTYKDYLDLFRSLLSCDQM 550
551 MDSLLADEAFLFVNSSLQNLNRLLYDEFVKSVLKIIEKLDLTLEKRNVGE 600
601 HEDENEATGVWVIPTSDPAANLHPAKPKDFSAFINLVEFCRDILPEKHIE 650
651 FFEPWVYSFAYELILQSTRLPLISGFYKLLSVAVRNAKKIKYFEGVGMKS 700
701 QTQAPKDPEKYSCFALFAKFGKEVTVKMKQYKDELLASCLTFILSLPHDI 750
751 IELDIRAYIPALQMAFKLGLSYTPLAEVGLNALEEWSVCICKHIIQPHYK 800
801 DILPSLDGYLKTSALSDETKNSWEVSAPSQAAQKGFNQVVLKHLKKTKNI 850
851 SSNEALSLEEIRIRVVQMLGFLGGQINKNLLTATSSDEMMKKCVAWDREK 900
901 RLSFAVPFIEMKPVIYLDVFLPRVTELALSASDRQTKVAACELLHSMVMF 950
951 TLGKATQMPECGQGFPPMYQLYKRTFPALLRLACDVDQVTRQLYEPLVMQ 1000
1001 LIHWFTNNKKFESQDTVALLETILDGIVDPVDSTLRDFCGRCIREFLKWS 1050
1051 IKQTTPQQQEKSPVNTKSLFKRLYSFALHPNAFKRLGASLAFNNIYREFR 1100
1101 EEESLVEQFVFEALVTYLESLALAHTDEKPLGTIRQCCDAIDHLRHIIEK 1150
1151 KHVSLNKVKKRRRPRGFPPSASLCLLDMVQWLLAHCGRPQTECRHKSIEL 1200
1201 FYKFVPLLPGNKSPSLWLKDILKNKDTSFLINTFEGGGGSCDRPSGILVQ 1250
1251 PTLFHLQGPFSLRAALQWMDMLLAALECYNTFIEEKTLKAPDVLGTETQS 1300
1301 SLWKAVAFFLDNIAMHDITAAEKCFGTGAAGHRPSPQEGERYNYSKCTIV 1350
1351 VRIMEFTTTLLNTSPDGWKLLEEDLCNNKNFMTLLVKILCQPSSIGFNIG 1400
1401 DVLVMNHLPDVCVNLMKALKKSPYKDTLEMCLKEKITVQSIEELCAVDLY 1450
1451 GPDAYVDRATLASVVSACKQLHRAGVLHVVLPSQSADQRHSVGIKLLFLV 1500
1501 YKSIAPGDEREYFPSLDPSCKRLASGLLELAFAFGGLCEHLVDLLLDTAV 1550
1551 LSMPASGESQRNMVSFSHGEYFYSLFSEIINTELLRNLDMTVLKLMKSSV 1600
1601 DNPKMVSAILNGMLDQSFRDRASRKQQGLKLASTILHNWKKWDSWWAKDS 1650
1651 APESKTAVLTLLAKILQIDSSVSFNTNHSAFPEVFTTYTSLLADSNLGLH 1700
1701 LMGQAVILLPFFTNLTGGNLEDLEHVLEKLIVSNFPMKSEEFPVGTLRYS 1750
1751 NYVDCMKKFLDALELSQSPVLLQLMAEILCREQQHVMEELFQSTFKKIAR 1800
1801 KSSCVTQLALLESVYRMFKRDDLLSNVTRQAFVDRSLLTLLWHCGLNALR 1850
1851 EFFGKIVVETIDVLKSRFTKLNESTFDTQITKKMGFYKMLDVMYSRLSKD 1900
1901 DVHSKESKINQVFHGSCITEGNELTKTLIKLCYDAFTENMAGENQLLERR 1950
1951 RLYHCAAYNCAISVICCVFTELKFYQGFLFSEKPEKNLLILENLIDLKRC 2000
2001 YTFPIEVEVPMERRKKYIEIRKEAREAVNGDSDGPHYLSSLSYLADSSLS 2050
2051 EEMSQFDFSTGVQSYSYGSQDPKSTHGHFRRREHKDPMVQDAVLELEMDE 2100
2101 LNQHECMATMTALIKHMQRNQILSKDEGSVPRNLPPWMKFLHDKLGNPSV 2150
2151 SLNIRLFLAKLVINTEEVFRPYAKYWLSPLLQLVVSENNGGEGIHYMVVE 2200
2201 IVVTVLSWTGLATPVGVPKDEVLANRLLHFLMEHVFHQKRAVFRHNLEII 2250
2251 KTLVECWKDCLSVPYRLIFEKFSSKDPNSKDNSVGIQLLGIVMANNLPPY 2300
2301 DPKCGIERIKYFEALVSNMSFVKYKEVYAAAAEVLGLTLRYITERENILE 2350
2351 NVVYELVIKQLKQHQNTMEDKFIVCLNKVVKNFPPLADRFMNAVFFLLPK 2400
2401 FHGVMKTLCLEVVLCRAEEITNIYLELKSKDFIQVMRHRDDERQKVCLDI 2450
2451 IYKMMAKLKPVELRDLLNSVVEFISHPSPVCREQMYNILMWIHDNYRDPE 2500
2501 SQADDDSREVFKLAKDVLIQGLIDENAGLQLIIRNFWSHETRLPSNTLDR 2550
2551 LLALNSLYSPKIEVHFLSLATDFLLEMTSLSPDYANPVFEHPLSECEFQE 2600
2601 YTIDSDWRFRSTVLTPMFIETQASQSTLQTRTQERSLPAQGVMARQIRAT 2650
2651 QQQYDFTPTQTADGRSSFNWLTGSSIDPLVDYTVSSSDSSSSSLLFAQKR 2700
2701 NEKSQRAPLKSVGPDFGEKKLGLPGDKVDNKAKGIDNRTEILRLRRRFIK 2750
2751 DQEKLSLIYARKGIAEQKREKEIKSELKMKHDAQVILYRSYRQGDLPDIQ 2800
2801 IKYSSLVTPLQAVAQRDPVVAKQLFGSLFSGIIKEMDKYKTMSEKNNITQ 2850
2851 KLLQDFSHFLNSTFSFFPPFVSCIQEISCQHTDLLSLDPGSIRASCLASL 2900
2901 QQPVGVRLLEEALLHLGPQEPPAKQFKGRMRVSPDVVRWMELAKLYRSIG 2950
2951 EYDILRGIFSSEIGTKQITQSAIFAEARSDYSEAAKQYNEALNKEEWVDG 3000
3001 EPTEAEKDFWELASLDCYNQLAEWKSLAYCSIVSVDNENPPDLNKMWSEP 3050
3051 FYRETYLPYMIRSKLKLLLQGEADQSLLTFIDEAVNKDLQKALIELHYSQ 3100
3101 ELSLLYILQDDIDRAKYYIENCIQIFMQNYSSIDVLLHRSRLTKLQSVQT 3150
3151 MIEIQEFISFISRQGNLSSQAPLKRLLKSWTNRYPDARMDPVHIWDDIIT 3200
3201 NRCFFLSKIEEKLTLPLGDHSLSMDEERDSSDKMEVQEQGEEVCSLIKNC 3250
3251 MFSMKMKMVESARKQHNFSLAMKLLKELRRESKTRDDWQVKWVHTYCRLS 3300
3301 HSRIQGQSCLQQILSALKTVSLLAGESTSSYFSKNVLAFHDQNILLGTTY 3350
3351 SIIANALRREPACLAEIEESRARRILDLSGSSLENAEKVIAVLYQRAFHH 3400
3401 LSEAVRTAEEEAQPSLRGQGPVASLTDAYMTLADFCDQQLRKEEESASVT 3450
3451 ESVELQTYPGLVVDNMLKALKLHSSEARLKFPRLLQIIELYPEETLSLMT 3500
3501 KEISSTPCWQFIGWISHMVALLDQEEAVAVQCTVEEIADNYPQAIVYPFI 3550
3551 ISSESYSFKDTSTGHKNKEFVARIKTKLDLGGVIQDFISALEQLSNPEML 3600
3601 FKDWTDDMKAELAKNPVSKKNIEKMYERMYAALGDLRAPGLGAFRRRFIQ 3650
3651 VFGKEFDKHFGKGGSKLPGMKLRDFGSITDSLFYKMCTDSKPPGNLKECS 3700
3701 PWMSDFKVEFLRNELEIPGQYDGKGKPLPEYHARIAGFDERIKVMASIRK 3750
3751 PKRIIIRGRDEKEYPLLVKGGEDLRQDQRIEQLFEVMNVLLSQDTACSQR 3800
3801 NMQLKTYHVIPMTSRLGLIEWIENTLTLKDFLLSNMSREEKAAYTSDPKA 3850
3851 PPCEYRDWLAKMSGKYDVGAYMSMFKAASRTETVTSFRRRESRVPADLLK 3900
3901 RAFLKMSTGPAAFLALRSHFASSHALMCISHWILGIGDRHLNNFMVSMET 3950
3951 GGLIGIDFGHAFGSATQFLPVPELMPFRLTRQFINLMLPMKEAGVVYSIM 4000
4001 VHALRAFRSHSDLLTNTMDVFVKEPSFDWKNFEQKMLKKGGSWIQEINVT 4050
4051 EKNWYPRQKIHYAKRKLAGANPAVITCDELFLGHEKALAFGDYVAVARGS 4100
4101 KDHNIRAQQPENGLSEEAQVKCLIDQATDPNILGRTWIGWEPWM 4144

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.