SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q8WZ64 from www.uniprot.org...

The NucPred score for your sequence is 0.96 (see score help below)

   1  MSSVSEVNVDIKDFLMSINLEQYLLHFHESGFTTVKDCAAINDSLLQKIG    50
51 ISPTGHRRRILKQLQIILSKMQDIPIYANVHKTKKNDDPSKDYHVPSSDQ 100
101 NICIELSNSGSVQTSSPPQLETVRKNLEDSDASVERSQYPQSDDKLSPPK 150
151 RDFPTAEEPHLNLGSLNDSLFGSDNIKIESLITKKTVDHTVEEQQTEKVK 200
201 LITENLSKLPNADSECLSFVGCSTSGTNSGNGTNGLLEGSPPSPFFKFQG 250
251 EMIVNDLYVPSSPILAPVRSRSKLVSRPSRSFLLRHRPVPEIPGSTKGVS 300
301 GSYFRERRNVATSTEKSVAWQNSNEENSSSIFPYGETFLFQRLENSKKRS 350
351 IKNEFLTQGEALKGEAATATNSFIIKSSIYDNRKEKISEDKVEDIWIPRE 400
401 DKNNFLIDTASESEYSTVEECFQSLRRKNSKASKSRTQKALILDSVNRHS 450
451 YPLSSTSGNADSSAVSSQAISPYACFYGASAKKVKSGWLDKLSPQGKRMF 500
501 QKRWVKFDGLSISYYNNEKEMYSKGIIPLSAISTVRVQGDNKFEVVTTQR 550
551 TFVFRVEKEEERNDWISILLNALKSQSLTSQSQAVVTPEKCGYLELRGYK 600
601 AKIFTVLSGNSVWLCKNEQDFKSGLGITIIPMNVANVKQVDRTVKQSFEI 650
651 ITPYRSFSFTAETEKEKQDWIEAVQQSIAETLSDYEVAEKIWFNESNRSC 700
701 ADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNE 750
751 LIELFIVIGNKRANDFWAGNLQKDEELHMDSPVEKRKNFITQKYKEGKFR 800
801 KTLLASLTKEELNKALCAAVVKPDVLETMALLFSGADVMCATGDPVHSTP 850
851 YLLAKKAGQSLQMEFLYHNKFSDFPQHDIHSEGVLSQESSQSTFLCDFLY 900
901 QAPSAASKLSSEKKLLEETNKKWCVLEGGFLSYYENDKSTTPNGTININE 950
951 VICLAIHKEDFYLNTGPIFIFEIYLPSERVFLFGAETSQAQRKWTEAIAK 1000
1001 HFVPLFAENLTEADYDLIGQLFYKDCHALDQWRKGWFAMDKSSLHFCLQM 1050
1051 QEVQGDRMHLRRLQELTISTMVQNGEKLDVLLLVEKGRTLYIHGHTKLDF 1100
1101 TVWHTAIEKAAGTDGNALQDQQLSKNDVPIIVNSCIAFVTQYGLGCKYIY 1150
1151 QKNGDPLHISELLESFKKDARSFKLRAGKHQLEDVTAVLKSFLSDIDDAL 1200
1201 LTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRV 1250
1251 QKCSEINHMNAHNLALVFSSCLFQTKGQTSEEVNVIEDLINNYVEIFEVK 1300
1301 EDQVKQMDIENSFITKWKDTQVSQAGDLLIEVYVERKEPDCSIIIRISPV 1350
1351 MEAEELTNDILAIKNIIPTKGDIWATFEVIENEELERPLHYKENVLEQVL 1400
1401 RWSSLAEPGSAYLVVKRFLTADTIKHCSDRSTLGSIKEGILKIKEEPSKI 1450
1451 LSGNKFQDRYFVLRDGFLFLYKDVKSSKHDKMFSLSSMKFYRGVKKKMKP 1500
1501 PTSWGLTAYSEKHHWHLCCDSSRTQTEWMTSIFIAQHEYDIWPPAGKERK 1550
1551 RSITKNPKIGGLPLIPIQHEGNATLARKNIESARAELERLRLSEKCDKES 1600
1601 VDSSLKERASMVAHCLEHKDDKLRNRPRKHRSFNCLEDTEPEAPLGQPKG 1650
1651 HKGLKTLRKTEDRNSKATLDSDHKLPSRVIEELNVVLQRSRTLPKELQDE 1700
1701 QILK 1704

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.