SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q90243 from www.uniprot.org...

The NucPred score for your sequence is 0.84 (see score help below)

   1  LTIALVGSQQTKYEPSFSGSKTYQYKYEGVILTGLPEKGLARAGLKVHCK    50
51 VEISEVAQKTYLLKILNPEIQEYNGIWPKAPFYPASKLTQALASQLTQPI 100
101 KFQYRNGQVGDIFASEDVSDTVLNIQRGILNMLQLTIKTTQNVYGLQENG 150
151 IAGICEASYVIQEDRKANKIIVTKSKDLNNCNEKIKMDIGMAYSHTCSNC 200
201 RKIRKNTRGTAAYTYILKPTDTGTLITQATSQEVHQLTPFNEMTGAAITE 250
251 ARQKLVLEDAKVIHVTVPEQELKNRGSIQYQFASEILQTPIQLFKTRSPE 300
301 TKIKEVLQHLVQNNQQQVQSDAPSKFLQLTQLLRACTHENIEGIWRQYEK 350
351 TQLYRRWILDALPAAATPTAFRFITQRIMKRDLTDAEAIQTLVTAMHLVQ 400
401 TNHQIVQMAAELVFDRANLKCPVLRKHAVLAYGSMVNRYCAETLNCREEA 450
451 LKPLHDFANDAISRAHEEETVLALKALGNAGQPSSIKRIQKCLPGFSSGA 500
501 SQLPVKIQVDAVMALRNIAKKEPGKVQELTMQLFMDHQLHSEVRMVASMV 550
551 LLETRPSMALVATLAEALLKETSLQVASFTYSHMKAITRSTAPENHALSS 600
601 ACNVAVKLLSRKLDRLSYRYSKAMHMDTFKYPLMAGAAANIHIINNAASI 650
651 LPSAVVMKFQAYILSATADPLEIGLHTEGLQEVLMQNHEHIDQMPSAGKI 700
701 QQIMKMLSGWKSVPSEKTLASAYIKLFGQEISFSRLDKKTIQEALQAVRE 750
751 PVERQTVIKRVVNQLERGAAAQLSKPLLVAEVRRILPTCIGLPMEMSLYV 800
801 SAVTTADINVQAHITPSPTNDFNVAQLLNSNIVLHTDVTPSIAMHTIAVM 850
851 GINTHVIQTGVELHVKARTTVPMKFTAKIDLKEKNFKIESEPCQQETEVL 900
901 SLSAQAFAISRNVEDLDAAKKNPLLPEEAVRNILNEQFNSGTEDSNERER 950
951 AGKFARPSAEMMSQELMNSGEHQNRKGAHATRSACAKAKNFGFEVCFEGK 1000
1001 SENVAFLRDSPLYKIIGQHHCKIALKPSHSSEATIEKIQLELQTGNKAAS 1050
1051 KIIRVVAMQSLAEADEMKGNILKKLNKLLTVDGETQDSTLRGFKRRSSSS 1100
1101 SSSSSSSSSSSSSSSSSSSQQSRMEKRMEQDKLTENLERDRDHMRGKQSK 1150
1151 NKKQEWKNKQKKHHKQLPSSSSSSSSSSSGSNSSSSSSSSSSSSSRSHNH 1200
1201 RNNTRTLSKSKRYQNNNNSSSSSGSSSSSEEIQKNPEIFAYRFRSHRDKL 1250
1251 GFQNKRGRMSSSSSSSSSSSSQSTLNSKQDAKFLGDSSPPIFAFVARAVR 1300
1301 SDGLQQGYQVAAYTDNRVSRPRVQLLATEIIEKSRWQICADAILASNYKA 1350
1351 MALMRWGEECQDYKVAVSAVTGRLASHPSLQIKAKWSRIPRAAKQTQNIL 1400
1401 AEYVPGAAFMLGFSQKEQRNPSKQFKIILAVTSPNTIDTLIKAPKITLFK 1450
1451 QAVQIPVQIPMEPSDAERRSPGLASIMNEIPFLIEEATKSKCVAQENKFI 1500
1501 TFDGVKFSYQMPGGCYHILAQDCRSKVRFMVMLKQASMSKNLRAVNAKIY 1550
1551 NKDIDILPTTKGSVRLLINNNEIPLSQLPFTDSSGNIHIKRADEGVSVSA 1600
1601 QQYGLESLYFDGKTVQVKVTSEMRGKTCGLCGHNDGERRKEFRMPDGRQA 1650
1651 RGPSVSPTPGLCLEKTATEAASFCVIM 1677

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.