SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q91690 from www.uniprot.org...

The NucPred score for your sequence is 0.80 (see score help below)

   1  MASRQCPPAAVFNSMNPPVNSYVEHCYLRSPNVMAEGMNEMPYCHQTNLM    50
51 TSHHGFGLAQGSDHLAGTDGSRFSTPRSTMKLSKKRAMSISPLSDASIDL 100
101 QTMIRTSPNSLVAFINSRCSSASGSYGHLSIGTISPSLGYQNCLNHQRPQ 150
151 AGPYGSNPLMPYNSHEHLSSRGMSMLQPRSSVKHCQLKSEPLSITGLDTI 200
201 GSKRLEDGSEGDISSPASVGTQDPLLGLLDGRDDLEKDDGKHEPETVYET 250
251 NCHWESCTKEFDTQEHLVHHINNEHIHGEKKEFVCHWQDCSRELRPFKAQ 300
301 YMLVVHMRRHTGEKPHKCTFEGCNKAYSRLENLKTHLRSHTGEKPYVCEH 350
351 EGCNKAFSNASDRAKHQNRTHSNEKPYVCKIPGCTKRYTDPSSLRKHVKT 400
401 VHGPEAHITKKHRGDGMLRAQPGHEGPGNQNVKGENQLDMEASSACKEDG 450
451 RLAVPDITLKSQPSPGGQSSCSSERSPLGSTNNNDSGVEMNANTGGSFED 500
501 LTNLDDIPSVDSMGTAGASALRKLENLRIDKLNQLRKTPSSGKMVKLPSI 550
551 HNSGPQGDMSVVCGPLGMSHNQHGIELPASSHVNHLNDRRNSTTSTMSSA 600
601 YTVSRRSSVVSPYLPNQRAGDSGNMVDSYDISTDPSGHSNEAVCASGLPG 650
651 LTPAQQYRLKAKYAAATGGPPPTPLPNMERMNTNNRMAFASSDYRGSAIS 700
701 SLQRRHSSNEYHNYGTGIIHPAQAPGAGIRRASDPARTGGDIQAVPKVQR 750
751 FKSMTNMNVSMMGRQGTSIQQAYGGSDANLQRHMFSPRPPSITENVFMET 800
801 AGPDEVCHTKEQGFIQSNEMQHYMNYQGQGSQLTAPNDHMNFNPQIHGLD 850
851 GQSQNVYSHSQRAISNMHLNAENYSGQSNVSNFNQCQMTAHNQHFQNTRQ 900
901 AYNCANLPVQWNEVSSGTMDNPVQRPNHQIMHQNMSPGNHCQSQLSNCTV 950
951 PESTKQGCPVNRNSCQQGMYMNNQKYNHGGQVQVKPEQQFHHSAPAMMSC 1000
1001 QNMKHPSRQEHHFTKTNTMPLSSEATNCDYQGQQDSTQNSCFNVGLNLNL 1050
1051 LSPPGRRSQTPIMQVKEIMVRNYVQSQQALMWEQHPKSMAMMTNSGDDVD 1100
1101 TRQNQHKNTLNAAVYMGPKYMNYQGKPSPNNLMSPSSQDSQSSHTKAMGS 1150
1151 PSSQCYNFDMMPHPPCGPKPLSRQHSVSSQSTYMGSPNQLSPSYQSSESS 1200
1201 PRRMACLPPIQPQSEVTNNTSMMYYTGQMEMHQSKPGVHKLTTPLNLNQT 1250
1251 SCDGHQHGQYNASHSFLKTVPYTSSCPAANTLDSLDLENTQIDFTAIIDD 1300
1301 ADNALMPGNISPNVLAGSSQASSHLTTLRNTGAVVPNMVVGDLNSMLSSL 1350
1351 AGENKYLNTM 1360

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.