SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q92766 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MTSSSPAGLEGSDLSSINTMMSAVMSVGKVTENGGSPQGIKSPSKPPGPN    50
51 RIGRRNQETKEEKSSYNCPLCEKICTTQHQLTMHIRQHNTDTGGADHSCS 100
101 ICGKSLSSASSLDRHMLVHSGERPYKCTVCGQSFTTNGNMHRHMKIHEKD 150
151 PNSATATAPPSPLKRRRLSSKRKLSHDAESEREDPAPAKKMVEDGQSGDL 200
201 EKKADEVFHCPVCFKEFVCKYGLETHMETHSDNPLRCDICCVTFRTHRGL 250
251 LRHNALVHKQLPRDAMGRPFIQNNPSIPAGFHDLGFTDFSCRKFPRISQA 300
301 WCETNLRRCISEQHRFVCDTCDKAFPMLCSLALHKQTHVAADQGQEKPQA 350
351 TPLPGDALDQKGFLALLGLQHTKDVRPAPAEEPLPDDNQAIQLQTLKCQL 400
401 PQDPGCTNLLSLSPFEAASLGGSLTVLPATKDSIKHLSLQPFQKGFIIQP 450
451 DSSIVVKPISGESAIELADIQQILKMAASAPPQISLPPFSKAPAAPLQAI 500
501 FKHMPPLKPKPLVTPRTVVATSTPPPLINAQQASPGCISPSLPPPPLKLL 550
551 KGSVEAASNAHLLQSKSGTQPHAATRLSLQQPRAELPGQPEMKTQLEQDS 600
601 IIEALLPLSMEAKIKQEITEGELKAFMTAPGGKKTPAMRKVLYPCRFCNQ 650
651 VFAFSGVLRAHVRSHLGISPYQCNICDYIAADKAALIRHLRTHSGERPYI 700
701 CKICHYPFTVKANCERHLRKKHLKATRKDIEKNIEYVSSSAAELVDAFCA 750
751 PDTVCRLCGEDLKHYRALRIHMRTHCGRGLGGGHKGRKPFECKECSAAFA 800
801 AKRNCIHHILKQHLHVPEQDIESYVLAADGLGPAEAPAAEASGRGEDSGC 850
851 AALGDCKPLTAFLEPQNGFLHRGPTQPPPPHVSIKLEPASSFAVDFNEPL 900
901 DFSQKGLALVQVKQENISFLSPSSLVPYDCSMEPIDLSIPKNFRKGDKDL 950
951 ATPSEAKKPEEEAGSSEQPSPCPAPGPSLPVTLGPSGILESPMAPAPAAT 1000
1001 PEPPAQPLQGPVQLAVPIYSSALVSSPPLVGSSALLSGTALLRPLRPKPP 1050
1051 LLLPKPPVTEELPPLASIAQIISSVSSAPTLLKTKVADPGPASTGSNTTA 1100
1101 SDSLGGSVPKAATTATPAATTSPKESSEPPAPASSPEAASPTEQGPAGTS 1150
1151 KKRGRKRGMRSRPRANSGGVDLDSSGEFASIEKMLATTDTNKFSPFLQTA 1200
1201 EDNTQDEVAGAPADHHGPSDEEQGSPPEDKLLRAKRNSYTNCLQKITCPH 1250
1251 CPRVFPWASSLQRHMLTHTDSQSDAETAAAAGEVLDLTSRDREQPSEGAT 1300
1301 ELRQVAGDAPVEQATAETASPVHREEHGRGESHEPEEEHGTEESTGDADG 1350
1351 AEEDASSNQSLDLDFATKLMDFKLAEGDGEAGAGGAASQEQKLACDTCGK 1400
1401 SFKFLGTLSRHRKAHGRQEPKDEKGDGASTAEEGPQPAPEQEEKPPETPA 1450
1451 EVVESAPGAGEAPAEKLAEETEGPSDGESAAEKRSSEKSDDDKKPKTDSP 1500
1501 KSVASKADKRKKVCSVCNKRFWSLQDLTRHMRSHTGERPYKCQTCERTFT 1550
1551 LKHSLVRHQRIHQKARHAKHHGKDSDKEERGEEDSENESTHSGNNAVSEN 1600
1601 EAELAPNASNHMAVTRSRKEGLASATKDCSHREEKVTAGWPSEPGQGDLN 1650
1651 PESPAALGQDLLEPRSKRPAHPILATADGASQLVGME 1687

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.