| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q92954 from www.uniprot.org...
The NucPred score for your sequence is 0.92 (see score help below)
1 MAWKTLPIYLLLLLSVFVIQQVSSQDLSSCAGRCGEGYSRDATCNCDYNC 50
51 QHYMECCPDFKRVCTAELSCKGRCFESFERGRECDCDAQCKKYDKCCPDY 100
101 ESFCAEVHNPTSPPSSKKAPPPSGASQTIKSTTKRSPKPPNKKKTKKVIE 150
151 SEEITEEHSVSENQESSSSSSSSSSSSTIRKIKSSKNSAANRELQKKLKV 200
201 KDNKKNRTKKKPTPKPPVVDEAGSGLDNGDFKVTTPDTSTTQHNKVSTSP 250
251 KITTAKPINPRPSLPPNSDTSKETSLTVNKETTVETKETTTTNKQTSTDG 300
301 KEKTTSAKETQSIEKTSAKDLAPTSKVLAKPTPKAETTTKGPALTTPKEP 350
351 TPTTPKEPASTTPKEPTPTTIKSAPTTPKEPAPTTTKSAPTTPKEPAPTT 400
401 TKEPAPTTPKEPAPTTTKEPAPTTTKSAPTTPKEPAPTTPKKPAPTTPKE 450
451 PAPTTPKEPTPTTPKEPAPTTKEPAPTTPKEPAPTAPKKPAPTTPKEPAP 500
501 TTPKEPAPTTTKEPSPTTPKEPAPTTTKSAPTTTKEPAPTTTKSAPTTPK 550
551 EPSPTTTKEPAPTTPKEPAPTTPKKPAPTTPKEPAPTTPKEPAPTTTKKP 600
601 APTTPKEPAPTTPKETAPTTPKKLTPTTPEKLAPTTPEKPAPTTPEELAP 650
651 TTPEEPTPTTPEEPAPTTPKAAAPNTPKEPAPTTPKEPAPTTPKEPAPTT 700
701 PKETAPTTPKGTAPTTLKEPAPTTPKKPAPKELAPTTTKEPTSTTSDKPA 750
751 PTTPKGTAPTTPKEPAPTTPKEPAPTTPKGTAPTTLKEPAPTTPKKPAPK 800
801 ELAPTTTKGPTSTTSDKPAPTTPKETAPTTPKEPAPTTPKKPAPTTPETP 850
851 PPTTSEVSTPTTTKEPTTIHKSPDESTPELSAEPTPKALENSPKEPGVPT 900
901 TKTPAATKPEMTTTAKDKTTERDLRTTPETTTAAPKMTKETATTTEKTTE 950
951 SKITATTTQVTSTTTQDTTPFKITTLKTTTLAPKVTTTKKTITTTEIMNK 1000
1001 PEETAKPKDRATNSKATTPKPQKPTKAPKKPTSTKKPKTMPRVRKPKTTP 1050
1051 TPRKMTSTMPELNPTSRIAEAMLQTTTRPNQTPNSKLVEVNPKSEDAGGA 1100
1101 EGETPHMLLRPHVFMPEVTPDMDYLPRVPNQGIIINPMLSDETNICNGKP 1150
1151 VDGLTTLRNGTLVAFRGHYFWMLSPFSPPSPARRITEVWGIPSPIDTVFT 1200
1201 RCNCEGKTFFFKDSQYWRFTNDIKDAGYPKPIFKGFGGLTGQIVAALSTA 1250
1251 KYKNWPESVYFFKRGGSIQQYIYKQEPVQKCPGRRPALNYPVYGETTQVR 1300
1301 RRRFERAIGPSQTHTIRIQYSPARLAYQDKGVLHNEVKVSILWRGLPNVV 1350
1351 TSAISLPNIRKPDGYDYYAFSKDQYYNIDVPSRTARAITTRSGQTLSKVW 1400
1401 YNCP 1404
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.