SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q93008 from www.uniprot.org...

The NucPred score for your sequence is 0.83 (see score help below)

   1  MTATTRGSPVGGNDNQGQAPDGQSQPPLQQNQTSSPDSSNENSPATPPDE    50
51 QGQGDAPPQLEDEEPAFPHTDLAKLDDMINRPRWVVPVLPKGELEVLLEA 100
101 AIDLSKKGLDVKSEACQRFFRDGLTISFTKILTDEAVSGWKFEIHRCIIN 150
151 NTHRLVELCVAKLSQDWFPLLELLAMALNPHCKFHIYNGTRPCESVSSSV 200
201 QLPEDELFARSPDPRSPKGWLVDLLNKFGTLNGFQILHDRFINGSALNVQ 250
251 IIAALIKPFGQCYEFLTLHTVKKYFLPIIEMVPQFLENLTDEELKKEAKN 300
301 EAKNDALSMIIKSLKNLASRVPGQEETVKNLEIFRLKMILRLLQISSFNG 350
351 KMNALNEVNKVISSVSYYTHRHGNPEEEEWLTAERMAEWIQQNNILSIVL 400
401 RDSLHQPQYVEKLEKILRFVIKEKALTLQDLDNIWAAQAGKHEAIVKNVH 450
451 DLLAKLAWDFSPEQLDHLFDCFKASWTNASKKQREKLLELIRRLAEDDKD 500
501 GVMAHKVLNLLWNLAHSDDVPVDIMDLALSAHIKILDYSCSQDRDTQKIQ 550
551 WIDRFIEELRTNDKWVIPALKQIREICSLFGEAPQNLSQTQRSPHVFYRH 600
601 DLINQLQHNHALVTLVAENLATYMESMRLYARDHEDYDPQTVRLGSRYSH 650
651 VQEVQERLNFLRFLLKDGQLWLCAPQAKQIWKCLAENAVYLCDREACFKW 700
701 YSKLMGDEPDLDPDINKDFFESNVLQLDPSLLTENGMKCFERFFKAVNCR 750
751 EGKLVAKRRAYMMDDLELIGLDYLWRVVIQSNDDIASRAIDLLKEIYTNL 800
801 GPRLQVNQVVIHEDFIQSCFDRLKASYDTLCVLDGDKDSVNCARQEAVRM 850
851 VRVLTVLREYINECDSDYHEERTILPMSRAFRGKHLSFVVRFPNQGRQVD 900
901 DLEVWSHTNDTIGSVRRCILNRIKANVAHTKIELFVGGELIDPADDRKLI 950
951 GQLNLKDKSLITAKLTQISSNMPSSPDSSSDSSTGSPGNHGNHYSDGPNP 1000
1001 EVESCLPGVIMSLHPRYISFLWQVADLGSSLNMPPLRDGARVLMKLMPPD 1050
1051 STTIEKLRAICLDHAKLGESSLSPSLDSLFFGPSASQVLYLTEVVYALLM 1100
1101 PAGAPLADDSSDFQFHFLKSGGLPLVLSMLTRNNFLPNADMETRRGAYLN 1150
1151 ALKIAKLLLTAIGYGHVRAVAEACQPGVEGVNPMTQINQVTHDQAVVLQS 1200
1201 ALQSIPNPSSECMLRNVSVRLAQQISDEASRYMPDICVIRAIQKIIWASG 1250
1251 CGSLQLVFSPNEEITKIYEKTNAGNEPDLEDEQVCCEALEVMTLCFALIP 1300
1301 TALDALSKEKAWQTFIIDLLLHCHSKTVRQVAQEQFFLMCTRCCMGHRPL 1350
1351 LFFITLLFTVLGSTARERAKHSGDYFTLLRHLLNYAYNSNINVPNAEVLL 1400
1401 NNEIDWLKRIRDDVKRTGETGIEETILEGHLGVTKELLAFQTSEKKFHIG 1450
1451 CEKGGANLIKELIDDFIFPASNVYLQYMRNGELPAEQAIPVCGSPPTINA 1500
1501 GFELLVALAVGCVRNLKQIVDSLTEMYYIGTAITTCEALTEWEYLPPVGP 1550
1551 RPPKGFVGLKNAGATCYMNSVIQQLYMIPSIRNGILAIEGTGSDVDDDMS 1600
1601 GDEKQDNESNVDPRDDVFGYPQQFEDKPALSKTEDRKEYNIGVLRHLQVI 1650
1651 FGHLAASRLQYYVPRGFWKQFRLWGEPVNLREQHDALEFFNSLVDSLDEA 1700
1701 LKALGHPAMLSKVLGGSFADQKICQGCPHRYECEESFTTLNVDIRNHQNL 1750
1751 LDSLEQYVKGDLLEGANAYHCEKCNKKVDTVKRLLIKKLPPVLAIQLKRF 1800
1801 DYDWERECAIKFNDYFEFPRELDMEPYTVAGVAKLEGDNVNPESQLIQQS 1850
1851 EQSESETAGSTKYRLVGVLVHSGQASGGHYYSYIIQRNGGDGERNRWYKF 1900
1901 DDGDVTECKMDDDEEMKNQCFGGEYMGEVFDHMMKRMSYRRQKRWWNAYI 1950
1951 LFYERMDTIDQDDELIRYISELAITTRPHQIIMPSAIERSVRKQNVQFMH 2000
2001 NRMQYSMEYFQFMKKLLTCNGVYLNPPPGQDHLLPEAEEITMISIQLAAR 2050
2051 FLFTTGFHTKKVVRGSASDWYDALCILLRHSKNVRFWFAHNVLFNVSNRF 2100
2101 SEYLLECPSAEVRGAFAKLIVFIAHFSLQDGPCPSPFASPGPSSQAYDNL 2150
2151 SLSDHLLRAVLNLLRREVSEHGRHLQQYFNLFVMYANLGVAEKTQLLKLS 2200
2201 VPATFMLVSLDEGPGPPIKYQYAELGKLYSVVSQLIRCCNVSSRMQSSIN 2250
2251 GNPPLPNPFGDPNLSQPIMPIQQNVADILFVRTSYVKKIIEDCSNSEETV 2300
2301 KLLRFCCWENPQFSSTVLSELLWQVAYSYTYELRPYLDLLLQILLIEDSW 2350
2351 QTHRIHNALKGIPDDRDGLFDTIQRSKNHYQKRAYQCIKCMVALFSNCPV 2400
2401 AYQILQGNGDLKRKWTWAVEWLGDELERRPYTGNPQYTYNNWSPPVQSNE 2450
2451 TSNGYFLERSHSARMTLAKACELCPEEEPDDQDAPDEHESPPPEDAPLYP 2500
2501 HSPGSQYQQNNHVHGQPYTGPAAHHMNNPQRTGQRAQENYEGSEEVSPPQ 2550
2551 TKDQ 2554

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.