SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q96L73 from www.uniprot.org...

The NucPred score for your sequence is 0.98 (see score help below)

   1  MDQTCELPRRNCLLPFSNPVNLDAPEDKDSPFGNGQSNFSEPLNGCTMQL    50
51 STVSGTSQNAYGQDSPSCYIPLRRLQDLASMINVEYLNGSADGSESFQDP 100
101 EKSDSRAQTPIVCTSLSPGGPTALAMKQEPSCNNSPELQVKVTKTIKNGF 150
151 LHFENFTCVDDADVDSEMDPEQPVTEDESIEEIFEETQTNATCNYETKSE 200
201 NGVKVAMGSEQDSTPESRHGAVKSPFLPLAPQTETQKNKQRNEVDGSNEK 250
251 AALLPAPFSLGDTNITIEEQLNSINLSFQDDPDSSTSTLGNMLELPGTSS 300
301 SSTSQELPFCQPKKKSTPLKYEVGDLIWAKFKRRPWWPCRICSDPLINTH 350
351 SKMKVSNRRPYRQYYVEAFGDPSERAWVAGKAIVMFEGRHQFEELPVLRR 400
401 RGKQKEKGYRHKVPQKILSKWEASVGLAEQYDVPKGSKNRKCIPGSIKLD 450
451 SEEDMPFEDCTNDPESEHDLLLNGCLKSLAFDSEHSADEKEKPCAKSRAR 500
501 KSSDNPKRTSVKKGHIQFEAHKDERRGKIPENLGLNFISGDISDTQASNE 550
551 LSRIANSLTGSNTAPGSFLFSSCGKNTAKKEFETSNGDSLLGLPEGALIS 600
601 KCSREKNKPQRSLVCGSKVKLCYIGAGDEEKRSDSISICTTSDDGSSDLD 650
651 PIEHSSESDNSVLEIPDAFDRTENMLSMQKNEKIKYSRFAATNTRVKAKQ 700
701 KPLISNSHTDHLMGCTKSAEPGTETSQVNLSDLKASTLVHKPQSDFTNDA 750
751 LSPKFNLSSSISSENSLIKGGAANQALLHSKSKQPKFRSIKCKHKENPVM 800
801 AEPPVINEECSLKCCSSDTKGSPLASISKSGKVDGLKLLNNMHEKTRDSS 850
851 DIETAVVKHVLSELKELSYRSLGEDVSDSGTSKPSKPLLFSSASSQNHIP 900
901 IEPDYKFSTLLMMLKDMHDSKTKEQRLMTAQNLVSYRSPGRGDCSTNSPV 950
951 GVSKVLVSGGSTHNSEKKGDGTQNSANPSPSGGDSALSGELSASLPGLLS 1000
1001 DKRDLPASGKSRSDCVTRRNCGRSKPSSKLRDAFSAQMVKNTVNRKALKT 1050
1051 ERKRKLNQLPSVTLDAVLQGDRERGGSLRGGAEDPSKEDPLQIMGHLTSE 1100
1101 DGDHFSDVHFDSKVKQSDPGKISEKGLSFENGKGPELDSVMNSENDELNG 1150
1151 VNQVVPKKRWQRLNQRRTKPRKRMNRFKEKENSECAFRVLLPSDPVQEGR 1200
1201 DEFPEHRTPSASILEEPLTEQNHADCLDSAGPRLNVCDKSSASIGDMEKE 1250
1251 PGIPSLTPQAELPEPAVRSEKKRLRKPSKWLLEYTEEYDQIFAPKKKQKK 1300
1301 VQEQVHKVSSRCEEESLLARGRSSAQNKQVDENSLISTKEEPPVLEREAP 1350
1351 FLEGPLAQSELGGGHAELPQLTLSVPVAPEVSPRPALESEELLVKTPGNY 1400
1401 ESKRQRKPTKKLLESNDLDPGFMPKKGDLGLSKKCYEAGHLENGITESCA 1450
1451 TSYSKDFGGGTTKIFDKPRKRKRQRHAAAKMQCKKVKNDDSSKEIPGSEG 1500
1501 ELMPHRTATSPKETVEEGVEHDPGMPASKKMQGERGGGAALKENVCQNCE 1550
1551 KLGELLLCEAQCCGAFHLECLGLTEMPRGKFICNECRTGIHTCFVCKQSG 1600
1601 EDVKRCLLPLCGKFYHEECVQKYPPTVMQNKGFRCSLHICITCHAANPAN 1650
1651 VSASKGRLMRCVRCPVAYHANDFCLAAGSKILASNSIICPNHFTPRRGCR 1700
1701 NHEHVNVSWCFVCSEGGSLLCCDSCPAAFHRECLNIDIPEGNWYCNDCKA 1750
1751 GKKPHYREIVWVKVGRYRWWPAEICHPRAVPSNIDKMRHDVGEFPVLFFG 1800
1801 SNDYLWTHQARVFPYMEGDVSSKDKMGKGVDGTYKKALQEAAARFEELKA 1850
1851 QKELRQLQEDRKNDKKPPPYKHIKVNRPIGRVQIFTADLSEIPRCNCKAT 1900
1901 DENPCGIDSECINRMLLYECHPTVCPAGGRCQNQCFSKRQYPEVEIFRTL 1950
1951 QRGWGLRTKTDIKKGEFVNEYVGELIDEEECRARIRYAQEHDITNFYMLT 2000
2001 LDKDRIIDAGPKGNYARFMNHCCQPNCETQKWSVNGDTRVGLFALSDIKA 2050
2051 GTELTFNYNLECLGNGKTVCKCGAPNCSGFLGVRPKNQPIATEEKSKKFK 2100
2101 KKQQGKRRTQGEITKEREDECFSCGDAGQLVSCKKPGCPKVYHADCLNLT 2150
2151 KRPAGKWECPWHQCDICGKEAASFCEMCPSSFCKQHREGMLFISKLDGRL 2200
2201 SCTEHDPCGPNPLEPGEIREYVPPPVPLPPGPSTHLAEQSTGMAAQAPKM 2250
2251 SDKPPADTNQMLSLSKKALAGTCQRPLLPERPLERTDSRPQPLDKVRDLA 2300
2301 GSGTKSQSLVSSQRPLDRPPAVAGPRPQLSDKPSPVTSPSSSPSVRSQPL 2350
2351 ERPLGTADPRLDKSIGAASPRPQSLEKTSVPTGLRLPPPDRLLITSSPKP 2400
2401 QTSDRPTDKPHASLSQRLPPPEKVLSAVVQTLVAKEKALRPVDQNTQSKN 2450
2451 RAALVMDLIDLTPRQKERAASPHQVTPQADEKMPVLESSSWPASKGLGHM 2500
2501 PRAVEKGCVSDPLQTSGKAAAPSEDPWQAVKSLTQARLLSQPPAKAFLYE 2550
2551 PTTQASGRASAGAEQTPGPLSQSPGLVKQAKQMVGGQQLPALAAKSGQSF 2600
2601 RSLGKAPASLPTEEKKLVTTEQSPWALGKASSRAGLWPIVAGQTLAQSCW 2650
2651 SAGSTQTLAQTCWSLGRGQDPKPEQNTLPALNQAPSSHKCAESEQK 2696

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.