SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q96MS0 from www.uniprot.org...

The NucPred score for your sequence is 0.78 (see score help below)

   1  MLRYLLKTLLQMNLFADSLAGDISNSSELLLGFNSSLAALNHTLLPPGDP    50
51 SLNGSRVGPEDAMPRIVEQPPDLLVSRGEPATLPCRAEGRPRPNIEWYKN 100
101 GARVATVREDPRAHRLLLPSGALFFPRIVHGRRARPDEGVYTCVARNYLG 150
151 AAASRNASLEVAVLRDDFRQSPGNVVVAVGEPAVLECVPPRGHPEPSVSW 200
201 RKDGARLKEEEGRITIRGGKLMMSHTLKSDAGMYVCVASNMAGERESAAA 250
251 EVMVLERPSFLRRPVNQVVLADAPVTFLCEVKGDPPPRLRWRKEDGELPT 300
301 GRYEIRSDHSLWIGHVSAEDEGTYTCVAENSVGRAEASGSLSVHVPPQLV 350
351 TQPQDQMAAPGESVAFQCETKGNPPPAIFWQKEGSQVLLFPSQSLQPTGR 400
401 FSVSPRGQLNITAVQRGDAGYYVCQAVSVAGSILAKALLEIKGASLDGLP 450
451 PVILQGPANQTLVLGSSVWLPCRVTGNPQPSVRWKKDGQWLQGDDLQFKT 500
501 MANGTLYIANVQEMDMGFYSCVAKSSTGEATWSGWLKMREDWGVSPDPPT 550
551 EPSSPPGAPSQPVVTEITKNSITLTWKPNPQTGAAVTSYVIEAFSPAAGN 600
601 TWRTVADGVQLETHTVSGLQPNTIYLFLVRAVGAWGLSEPSPVSEPVRTQ 650
651 DSSPSRPVEDPWRGQQGLAEVAVRLQEPIVLGPRTLQVSWTVDGPVQLVQ 700
701 GFRVSWRVAGPEGGSWTMLDLQSPSQQSTVLRGLPPGTQIQIKVQAQGQE 750
751 GLGAESLSVTRSIPEEAPSGPPQGVAVALGGDGNSSITVSWEPPLPSQQN 800
801 GVITEYQIWCLGNESRFHLNRSAAGWARSAMLRGLVPGLLYRTLVAAATS 850
851 AGVGVPSAPVLVQLPSPPDLEPGLEVGAGLAVRLARVLREPAFLAGSGAA 900
901 CGALLLGLCAALYWRRKQRKELSHYTASFAYTPAVSFPHSEGLSGASSRP 950
951 PMGLGPAPYSWLADSWPHPSRSPSAQEPRGSCCPSNPDPDDRYYNEAGIS 1000
1001 LYLAQTARGTAAPGEGPVYSTIDPAGEELQTFHGGFPQHPSGDLGPWSQY 1050
1051 APPEWSQGDSGAKGGKVKLLGKPVQMPSLNWPEALPPPPPSCELSCLEGP 1100
1101 EEELEGSSEPEEWCPPMPERSHLTEPSSSGGCLVTPSRRETPSPTPSYGQ 1150
1151 QSTATLTPSPPDPPQPPTDMPHLHQMPRRVPLGPSSPLSVSQPMLGIREA 1200
1201 RPAGLGAGPAASPHLSPSPAPSTASSAPGRTWQGNGEMTPPLQGPRARFR 1250
1251 KKPKALPYRRENSPGDLPPPPLPPPEEEASWALELRAAGSMSSLERERSG 1300
1301 ERKAVQAVPLAAQRVLHPDEEAWLPYSRPSFLSRGQGTSTCSTAGSNSSR 1350
1351 GSSSSRGSRGPGRSRSRSQSRSQSQRPGQKRREEPR 1386

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.