SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q96Q42 from www.uniprot.org...

The NucPred score for your sequence is 0.65 (see score help below)

   1  MDSKKRSSTEAEGSKERGLVHIWQAGSFPITPERLPGWGGKTVLQAALGV    50
51 KHGVLLTEDGEVYSFGTLPWRSGPVEICPSSPILENALVGQYVITVATGS 100
101 FHSGAVTDNGVAYMWGENSAGQCAVANQQYVPEPNPVSIADSEASPLLAV 150
151 RILQLACGEEHTLALSISREIWAWGTGCQLGLITTAFPVTKPQKVEHLAG 200
201 RVVLQVACGAFHSLALVQCLPSQDLKPVPERCNQCSQLLITMTDKEDHVI 250
251 ISDSHCCPLGVTLTESQAENHASTALSPSTETLDRQEEVFENTLVANDQS 300
301 VATELNAVSAQITSSDAMSSQQNVMGTTEISSARNIPSYPDTQAVNEYLR 350
351 KLSDHSVREDSEHGEKPVPSQPLLEEAIPNLHSPPTTSTSALNSLVVSCA 400
401 SAVGVRVAATYEAGALSLKKVMNFYSTTPCETGAQAGSSAIGPEGLKDSR 450
451 EEQVKQESMQGKKSSSLVDIREEETEGGSRRLSLPGLLSQVSPRLLRKAA 500
501 RVKTRTVVLTPTYSGEADALLPSLRTEVWTWGKGKEGQLGHGDVLPRLQP 550
551 LCVKCLDGKEVIHLEAGGYHSLALTAKSQVYSWGSNTFGQLGHSDFPTTV 600
601 PRLAKISSENGVWSIAAGRDYSLFLVDTEDFQPGLYYSGRQDPTEGDNLP 650
651 ENHSGSKTPVLLSCSKLGYISRVTAGKDSYLALVDKNIMGYIASLHELAT 700
701 TERRFYSKLSDIKSQILRPLLSLENLGTTTTVQLLQEVASRFSKLCYLIG 750
751 QHGASLSSFLHGVKEARSLVILKHSSLFLDSYTEYCTSITNFLVMGGFQL 800
801 LAKPAIDFLNKNQELLQDLSEVNDENTQLMEILNTLFFLPIRRLHNYAKV 850
851 LLKLATCFEVASPEYQKLQDSSSCYECLALHLGRKRKEAEYTLGFWKTFP 900
901 GKMTDSLRKPERRLLCESSNRALSLQHAGRFSVNWFILFNDALVHAQFST 950
951 HHVFPLATLWAEPLSEEAGGVNGLKITTPEEQFTLISSTPQEKTKWLRAI 1000
1001 SQAVDQALRGMSDLPPYGSGSSVQRQEPPISRSAKYTFYKDPRLKDATYD 1050
1051 GRWLSGKPHGRGVLKWPDGKMYSGMFRNGLEDGYGEYRIPNKAMNKEDHY 1100
1101 VGHWKEGKMCGQGVYSYASGEVFEGCFQDNMRHGHGLLRSGKLTSSSPSM 1150
1151 FIGQWVMDKKAGYGVFDDITRGEKYMGMWQDDVCQGNGVVVTQFGLYYEG 1200
1201 NFHLNKMMGNGVLLSEDDTIYEGEFSDDWTLSGKGTLTMPNGDYIEGYFS 1250
1251 GEWGSGIKITGTYFKPSLYESDKDRPKVFRKLGNLAVPADEKWKAVFDEC 1300
1301 WRQLGCEGPGQGEVWKAWDNIAVALTTSRRQHRDSPEILSRSQTQTLESL 1350
1351 EFIPQHVGAFSVEKYDDIRKYLIKACDTPLHPLGRLVETLVAVYRMTYVG 1400
1401 VGANRRLLQEAVKEIKSYLKRIFQLVRFLFPELPEEGSTIPLSAPLPTER 1450
1451 KSFCTGKSDSRSESPEPGYVVTSSGLLLPVLLPRLYPPLFMLYALDNDRE 1500
1501 EDIYWECVLRLNKQPDIALLGFLGVQRKFWPATLSILGESKKVLPTTKDA 1550
1551 CFASAVECLQQISTTFTPSDKLKVIQQTFEEISQSVLASLHEDFLWSMDD 1600
1601 LFPVFLYVVLRARIRNLGSEVHLIEDLMDPYLQHGEQGIMFTTLKACYYQ 1650
1651 IQREKLN 1657

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.