SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q96QZ7 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MSKVIQKKNHWTSRVHECTVKRGPQGELGVTVLGGAEHGEFPYVGAVAAV    50
51 EAAGLPGGGEGPRLGEGELLLEVQGVRVSGLPRYDVLGVIDSCKEAVTFK 100
101 AVRQGGRLNKDLRHFLNQRFQKGSPDHELQQTIRDNLYRHAVPCTTRSPR 150
151 EGEVPGVDYNFLTVKEFLDLEQSGTLLEVGTYEGNYYGTPKPPSQPVSGK 200
201 VITTDALHSLQSGSKQSTPKRTKSYNDMQNAGIVHAENEEEDDVPEMNSS 250
251 FTADSGEQEEHTLQETALPPVNSSIIAAPITDPSQKFPQYLPLSAEDNLG 300
301 PLPENWEMAYTENGEVYFIDHNTKTTSWLDPRCLNKQQKPLEECEDDEGV 350
351 HTEELDSELELPAGWEKIEDPVYGIYYVDHINRKTQYENPVLEAKRKKQL 400
401 EQQQQQQQQQQQQQQQQQQQQTEEWTEDHSALVPPVIPNHPPSNPEPARE 450
451 VPLQGKPFFTRNPSELKGKFIHTKLRKSSRGFGFTVVGGDEPDEFLQIKS 500
501 LVLDGPAALDGKMETGDVIVSVNDTCVLGHTHAQVVKIFQSIPIGASVDL 550
551 ELCRGYPLPFDPDDPNTSLVTSVAILDKEPIIVNGQETYDSPASHSSKTG 600
601 KVNGMKDARPSSPADVASNSSHGYPNDTVSLASSIATQPELITVHIVKGP 650
651 MGFGFTIADSPGGGGQRVKQIVDSPRCRGLKEGDLIVEVNKKNVQALTHN 700
701 QVVDMLVECPKGSEVTLLVQRGGLPVPKKSPKSQPLERKDSQNSSQHSVS 750
751 SHRSLHTASPSHSTQVLPEFPPAEAQAPDQTDSSGQKKPDPFKIWAQSRS 800
801 MYENRPMSPSPASGLSKGEREREINSTNFGECPIPDYQEQDIFLWRKETG 850
851 FGFRILGGNEPGEPIYIGHIVPLGAADTDGRLRSGDELICVDGTPVIGKS 900
901 HQLVVQLMQQAAKQGHVNLTVRRKVVFAVPKTENEVPSPASSHHSSNQPA 950
951 SLTEEKRTPQGSQNSLNTVSSGSGSTSGIGSGGGGGSGVVSTVVQPYDVE 1000
1001 IRRGENEGFGFVIVSSVSRPEAGTTFAGNACVAMPHKIGRIIEGSPADRC 1050
1051 GKLKVGDRILAVNGCSITNKSHSDIVNLIKEAGNTVTLRIIPGDESSNAT 1100
1101 LLTNAEKIATITTTHTPSQQGTQETRNTTKPKQESQFEFKAPQATQEQDF 1150
1151 YTVELERGAKGFGFSLRGGREYNMDLYVLRLAEDGPAERCGKMRIGDEIL 1200
1201 EINGETTKNMKHSRAIELIKNGGRRVRLFLKRGDGSVPEYDPSSDRHGPA 1250
1251 TGPQGVPEVRAGPDRRQHPSLESSYPPDLHKSSPHGEKRAHARDPKGSRE 1300
1301 YSRQPNEHHTWNGTSRKPDSGACRPKDRAPEGRRDAQAERAAAANGPKRR 1350
1351 SPEKRREGTRSADNTLERREKHEKRRDVSPERRRERSPTRRRDGSPSRRR 1400
1401 RSLERLLEQRRSPERRRGGSPERRAKSTDRRRARSPERRRERSLDKRNRE 1450
1451 DRASHREREEANLKQDAGRSSRHPPEQRRRPYKECSTDLSI 1491

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.