SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q96T23 from www.uniprot.org...

The NucPred score for your sequence is 1.00 (see score help below)

   1  MATAAAAAAVMAPPGCPGSCPNFAVVCSFLERYGPLLDLPELPFPELERV    50
51 LQAPPPDVGNGEVPKELVELHLKLMRKIGKSVTADRWEKYLIKICQEFNS 100
101 TWAWEMEKKGYLEMSVECKLALLKYLCECQFDDNLKFKNIINEEDADTMR 150
151 LQPIGRDKDGLMYWYQLDQDHNVRMYIEEQDDQDGSSWKCIVRNRNELAE 200
201 TLALLKAQIDPVLLKNSSQQDNSSRESPSLEDEETKKEEETPKQEEQKES 250
251 EKMKSEEQPMDLENRSTANVLEETTVKKEKEDEKELVKLPVIVKLEKPLP 300
301 ENEEKKIIKEESDSFKENVKPIKVEVKECRADPKDTKSSMEKPVAQEPER 350
351 IEFGGNIKSSHEITEKSTEETEKLKNDQQAKIPLKKREIKLSDDFDSPVK 400
401 GPLCKSVTPTKEFLKDEIKQEEETCKRISTITALGHEGKQLVNGEVSDER 450
451 VAPNFKTEPIETKFYETKEESYSPSKDRNIITEGNGTESLNSVITSMKTG 500
501 ELEKETAPLRKDADSSISVLEIHSQKAQIEEPDPPEMETSLDSSEMAKDL 550
551 SSKTALSSTESCTMKGEEKSPKTKKDKRPPILECLEKLEKSKKTFLDKDA 600
601 QRLSPIPEEVPKSTLESEKPGSPEAAETSPPSNIIDHCEKLASEKEVVEC 650
651 QSTSTVGGQSVKKVDLETLKEDSEFTKVEMDNLDNAQTSGIEEPSETKGS 700
701 MQKSKFKYKLVPEEETTASENTEITSERQKEGIKLTIRISSRKKKPDSPP 750
751 KVLEPENKQEKTEKEEEKTNVGRTLRRSPRISRPTAKVAEIRDQKADKKR 800
801 GEGEDEVEEESTALQKTDKKEILKKSEKDTNSKVSKVKPKGKVRWTGSRT 850
851 RGRWKYSSNDESEGSGSEKSSAASEEEEEKESEEAILADDDEPCKKCGLP 900
901 NHPELILLCDSCDSGYHTACLRPPLMIIPDGEWFCPPCQHKLLCEKLEEQ 950
951 LQDLDVALKKKERAERRKERLVYVGISIENIIPPQEPDFSEDQEEKKKDS 1000
1001 KKSKANLLERRSTRTRKCISYRFDEFDEAIDEAIEDDIKEADGGGVGRGK 1050
1051 DISTITGHRGKDISTILDEERKENKRPQRAAAARRKKRRRLNDLDSDSNL 1100
1101 DEEESEDEFKISDGSQDEFVVSDENPDESEEDPPSNDDSDTDFCSRRLRR 1150
1151 HPSRPMRQSRRLRRKTPKKKYSDDDEEEESEENSRDSESDFSDDFSDDFV 1200
1201 ETRRRRSRRNQKRQINYKEDSESDGSQKSLRRGKEIRRVHKRRLSSSESE 1250
1251 ESYLSKNSEDDELAKESKRSVRKRGRSTDEYSEADEEEEEEEGKPSRKRL 1300
1301 HRIETDEEESCDNAHGDANQPARDSQPRVLPSEQESTKKPYRIESDEEED 1350
1351 FENVGKVGSPLDYSLVDLPSTNGQSPGKAIENLIGKPTEKSQTPKDNSTA 1400
1401 SASLASNGTSGGQEAGAPEEEEDELLRVTDLVDYVCNSEQL 1441

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.