 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q98902 from www.uniprot.org...
The NucPred score for your sequence is 0.69 (see score help below)
1 MAHTQRQQGGSRGQWSRCLLLLLLLPLAAQPGRAAIQIPSSYYISDLKIP 50
51 PAITTQPESVTVFSVEDLVMRCEASGNPSPTFHWTKDGEEFDPSSDPEMK 100
101 VTEEAGSSVFYTLSNTMDTLKQYQGKYICYASNELGTAVSNAAVLMIDAP 150
151 PVQQKEKKVTEKAEAGHSIALSCNPPQSSMQPIIHWMDNRLRHIRLSDRV 200
201 MVGKDGNLYFANLLTEDSRNDYTCNIQYLATRTILAKEPITLTVNPSNLV 250
251 PRNRRPQMMRPTGSHSTYHALRGQTLELECIVQGLPTPKVSWLRKDGEMS 300
301 ESRISKDMFDRRLQFTNISESDGGEYQCTAENVQGRTFHTYTVTVEASPY 350
351 WTNAPVSQLYAPGETVKLDCQADGIPSPTITWTVNGVPLSATSLEPRRSL 400
401 TESGSLILKDVIFGDTAIYQCQASNKHGTILANTNVYVIELPPQILTENG 450
451 NTYTFVEGQKALLECETFGSPKPKVTWESSSISLLLADPRVNLLTNGGLE 500
501 IANVSHDDEGIYTCLVQGSNISVNAEVEVLNRTVILSPPQALRLQPGKTA 550
551 IFTCLYVTDPKLSSPLLQWRKNDQKIFESHSDKKYTFDGPGLIISNVEPG 600
601 DEGVYTCQIITKLDMVEASSTLTLCDRPDPPVHLQVTNAKHRVVTLNWTP 650
651 GDDNNSPILEYVVEFEDQDMKENGWEELKRVAADKKHVNLPLWPYMSYRF 700
701 RVIAINDQGKSDPSKLSDLYKTPADAPDSNPEDVRSESTDPDTLVITWEE 750
751 MDKRNFNGPDFKYLVMWRRVVGSGPDWHEEYTIAPPFIVTDVQNFSAFEI 800
801 KVQAVNKKGLGPEPDPIIGYSGEDVPLEAPLNLGVLLENSTTIRVTWSAV 850
851 DKETVRGHLLGYKIYLTWGHHRNSRAQEPENIVMVQTGANEEKKSITNLR 900
901 PYCHYDLAISAFNSKGEGPLSEKTSFMTPEGVPGPPMSMQMTSPSESEIT 950
951 LHWTPPSKPNGILLGYSLQYRKMQSDDNPLQVVDIASPEITHLTLKGLDR 1000
1001 HSHYQFLLMARTAAGKGLSIEILGATTLEGLPPANISLSAEERSVNLSWE 1050
1051 ARKRHRTVGFQIHYFSKNGTKNGGKWKKTEMVNSSLQFFQLQGLTPGSHY 1100
1101 RLLFTYKNNTFWETEIQTKGTSVTEVQPSFATQGWFIGVVSAVVLLLLVL 1150
1151 LILCFIKRSKGGKYSVKDKEDGPMDSEARPMKDETFGEYRSLESDLEEKR 1200
1201 TASQPSLGEDSKLCSEDNLDFNGSSAVTTELNMDESLASQFSRHSEGPEP 1250
1251 FHGVPDNSPLNPAANPPATNGAPSFLN 1277
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.