 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q98936 from www.uniprot.org...
The NucPred score for your sequence is 0.71 (see score help below)
1 MRRLLQPCWWIFFLKITSSVLHDVVCFPALTEGYVGSLHESRHGSSVQIR 50
51 RRKASGDPYWGYSGTYGPEHWVTSSEKCGGSHQSPIDIVDHQAHVLYEYQ 100
101 ELQLDGFDNESSNKTWMKNTGKTVAILLKDDYFVSGAGLPGRFKAEKVEF 150
151 HWGQSNGSAGSEHSINGKRFPVEMQIYFYNPDDFDSFGTAVLENREVGAM 200
201 AVFFQVSQRDNSALDPIIRGLKGVVHHEKETFLDPFVLRDLLPTSLGSYY 250
251 RYTGSLTTPPCSEIVEWIIFRKPVPISYHQLEAFYSIFTTEQQDHVKSVE 300
301 YLRNNFRPQQRLNNRKVSKSAVKDAWSQDMTDILENPLGTEASKACSTPP 350
351 VNMKVQPVNRTALLVTWNQPETIYHPPIMNYMISYSWTKNEDEKEKTFTK 400
401 DSDKDLKAIISHVSPDILYLFRVQAVCRNEMRSDFSQTMLFQANTTRIFE 450
451 GTRIVKTGVPTASPASSADMAPISSGSSTWTSSGLPFSFVSMATGMGPSS 500
501 SGSQATVASVVTSTLLAGLGFSGSSISSFPSSVWPTRLPTAAAPTKQAGR 550
551 PVVATTEPAAASPGPERDSALTKDGEGAEEGEKDEKSESEDGEREHEEED 600
601 EKEAEKKEKSRATAAAEARNSTEPSVATASPNWTAEEEGNKTVSGEEPNQ 650
651 NVVPKAGRPEEESFTDADTQPQPLPSTQVPPAFTDELYLEKIPRRPETTR 700
701 KPLPKDNRFLEEYPSDNKFITINPADKNSSSMATRPSPGKMEWIIPLIVV 750
751 SALTFVCLILLIAVLVYWRKCFQTAHFYVEDSSSPRVVPNESIPIIPIPD 800
801 DMEAIPVKQFVKHISELYSNNQHGFSEDFEEVQRCTADMNITAEHSNHPD 850
851 NKHKNRYINILAYDHSRVKLRPLPGKDSKHSDYINANYVSGYNKAKAYIA 900
901 TQGPLKSTFEDFWRMIWAQHTGIIVMITNLVEKGRRKCDQYWPTENSEEY 950
951 GNIIVTLKSTNIHACYTVRPLHGQEHKDEKGSERKPKGRQNERTVIQYHY 1000
1001 TQWPDMGVPEYALPVLTFVRRSSAARTPHMGPVVVHCSAGVGRTGTYIVI 1050
1051 DSMLQQIKDKSTVNVLGFLKHIRTQRNYLVQTEEQYIFIHDALLEAILGK 1100
1101 ETEVSANQLHSYVNSILIPGIGGKTRLEKQFKLVTQCNAKYVECFSAQKD 1150
1151 CNKEKNRNSSVVPSERARVGLAPLPGMKGTDYINASYIMGYYRSNENVIT 1200
1201 QHPLPHTTKDFWRMIWDHNAQIIVMLPDNQSLAEDEFVYWPSREESMNCE 1250
1251 AFTVTLISKDRLCLSNEEQIIIHDFILEATQDDYVLEVRHFQCPKWPNPD 1300
1301 APISSTFELINVIKEEALTRDGPTIVHDEYGAVSAGTLCALTTLSQQLEN 1350
1351 ENAVDVFQVAKMINLMRPGVFTDIEQYQFLYKAMLSLVSTKENGNGPMTL 1400
1401 DKNGAVMASDESDPAESMESLV 1422
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.