| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q99590 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MKKKTVCTLNMGDKKYEDMEGEENGDNTISTGLLYSEADRCPICLNCLLE 50
51 KEVGFPESCNHVFCMTCILKWAETLASCPIDRKPFQAVFKFSALEGYVKV 100
101 QVKKQLRETKDKKNENSFEKQVSCHENSKSCIRRKAIVREDLLSAKVCDL 150
151 KWIHRNSLYSETGGKKNAAIKINKPQRSNWSTNQCFRNFFSNMFSSVSHS 200
201 GESSFTYRAYCTEFIEASEISALIRQKRHELELSWFPDTLPGIGRIGFIP 250
251 WNVETEVLPLISSVLPRTIFPTSTISFEHFGTSCKGYALAHTQEGEEKKQ 300
301 TSGTSNTRGSRRKPAMTTPTRRSTRNTRAETASQSQRSPISDNSGCDAPG 350
351 NSNPSLSVPSSAESEKQTRQAPKRKSVRRGRKPPLLKKKLRSSVAAPEKS 400
401 SSNDSVDEETAESDTSPVLEKEHQPDVDSSNICTVQTHVENQSANCLKSC 450
451 NEQIEESEKHTANYDTEERVGSSSSESCAQDLPVLVGEEGEVKKLENTGI 500
501 EANVLCLESEISENILEKGGDPLEKQDQISGLSQSEVKTDVCTVHLPNDF 550
551 PTCLTSESKVYQPVSCPLSDLSENVESVVNEEKITESSLVEITEHKDFTL 600
601 KTEELIESPKLESSEGEIIQTVDRQSVKSPEVQLLGHVETEDVEIIATCD 650
651 TFGNEDFNNIQDSENNLLKNNLLNTKLEKSLEEKNESLTEHPRSTELPKT 700
701 HIEQIQKHFSEDNNEMIPMECDSFCSDQNESEVEPSVNADLKQMNENSVT 750
751 HCSENNMPSSDLADEKVETVSQPSESPKDTIDKTKKPRTRRSRFHSPSTT 800
801 WSPNKDTPQEKKRPQSPSPRRETGKESRKSQSPSPKNESARGRKKSRSQS 850
851 PKKDIARERRQSQSRSPKRDTTRESRRSESLSPRRETSRENKRSQPRVKD 900
901 SSPGEKSRSQSRERESDRDGQRRERERRTRKWSRSRSHSRSPSRCRTKSK 950
951 SSSFGRIDRDSYSPRWKGRWANDGWRCPRGNDRYRKNDPEKQNENTRKEK 1000
1001 NDIHLDADDPNSADKHRNDCPNWITEKINSGPDPRTRNPEKLKESHWEEN 1050
1051 RNENSGNSWNKNFGSGWVSNRGRGRGNRGRGTYRSSFAYKDQNENRWQNR 1100
1101 KPLSGNSNSSGSESFKFVEQQSYKRKSEQEFSFDTPADRSGWTSASSWAV 1150
1151 RKTLPADVQNYYSRRGRNSSGPQSGWMKQEEETSGQDSSLKDQTNQQVDG 1200
1201 SQLPINMMQPQMNVMQQQMNAQHQPMNIFPYPVGVHAPLMNIQRNPFNIH 1250
1251 PQLPLHLHTGVPLMQVATPTSVSQGLPPPPPPPPPSQQVNYIASQPDGKQ 1300
1301 LQGIPSSSHVSNNMSTPVLPAPTAAPGNTGMVQGPSSGNTSSSSHSKASN 1350
1351 AAVKLAESKVSVAVEASADSSKTDKKLQIQEKAAQEVKLAIKPFYQNKDI 1400
1401 TKEEYKEIVRKAVDKVCHSKSGEVNSTKVANLVKAYVDKYKYSRKGSQKK 1450
1451 TLEEPVSTEKNIG 1463
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.