  |  Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. | 
NucPred
Fetching  Q9BBN6  from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
   1  MIFQSFILDNLVSLCLKIINSVIVVGLYYGFMTTFSTGPSYLFLLRAHVM    50
  51  EEGTEKKISATTGFITGQLVMFISIYYAPLHIALDRPHTITVITLPYLLL   100
 101  YFLGNNQKNFLNYVYKNQNSIRHFSIQRIFFQNLFFQLLNPFFLPSSILM   150
 151  RLANIYIFQSNNKVLFLTSSFVGWLIGHVFFMKWIGLMLVWIQEKNNSIK   200
 201  STVAIRSNKGVLAKFRKSMFQIFLIFFFITCLYYLGRIPPIYFFTPKMSE   250
 251  IKERGEIEKREGEIDIEINSQRAGSKQEQKITAEEKLSPYLFSKKNNNLD   300
 301  KIKEENDIFGFQKPLVTILFDYNRWNRPLRYIKNDRFENVVRNEISQFFF   350
 351  FTCQSDGKERISFTYPPNLSTFQKMMEMKISLFTRDIISYEELSNSWRST   400
 401  NEEKKKKLTNEFLNRVEVLDKESLPVDIFENRIRLCNDEKKQKYLTKEYD   450
 451  PFLNGPCRGQIQKWFSPPIQKETYKKNSLFINKIHGILFSNTNNYPKFEQ   500
 501  KKNIFDRKSLLTDINFFFNLITKFSRKSVSSLNFEGLYLFPKDNKGKMSS   550
 551  KKKKFLFDTIRPDLNDNKIVNLQKCIGINEIVKKLPRWSYNLIDELEQLE   600
 601  GKKKVEYHQIRSRKAKRVVLLTKNSQNDDNYDETTDTDNTEKKKELALIR   650
 651  YSQQPDFRRDIIKGSIRAQRRKTVTCKLFQRSVDSPLFLEKMEKTSFFCF   700
 701  DILDSSKIFFMFKNWIRKKKELKNSDYTDEKAKESQKKEEEKIKKNEKEE   750
 751  KRRIEIGEAWDSIIFAQVIRGCLLITQSILRKYILLPSLIITKNIVRILL   800
 801  FQFPEWSEDFRDWQREMYIKCTYNGVQLSETEFPKKWLTDGIQIKILFPF   850
 851  RLKPWHRSKLRFTEKKKDPLKNKKVKKKNFCFLTIFGMEVELPFSGYPRN   900
 901  RFSFFDPILKELKKKMKKLKNNFFLILKIVNERTKNFITTLKETSKRIIQ   950
 951  SILKKVLFLNKKIKKLYNYLFLFRFKKIDELNQNKKNFPITKNNPIIYES  1000
1001  TILIQAINKTNCSLTEKKIKAINAKTKKIIKKIERMTKENKGGFLISEIN  1050
1051  SNSKKTSSNTKGLELEKKILQILQRRNVQLTHKLYSFFKFLLNFMKKVYT  1100
1101  DIFLCIVSVPRINVQFFLESTKKIINQSIYNKKTNEEIIDKTNQSIIHFI  1150
1151  SIINKSSNTKNTNSAANSYEVSALSQAYVFFKISQIQVLNVYKYKFKYVF  1200
1201  DYDGRSFFIKDEIKDYFFGIQGIIHSKLRHKNSPVSLKNQWTNWLKVHYQ  1250
1251  YDLSQNRWSRLVQKNLKNRINKHRLDQNKDLTKCDSYKKTQLIVSKNKKQ  1300
1301  QVDFLVNLLIQKKIKKQSRYDLLLYKFINYAEKKELSIYGYRSPFQANKK  1350
1351  RAISYDYNTQKKEFFDRMDDISIKNYIAEDAIRYIEQNRDRKYFDWVVMD  1400
1401  VKIQNNSISNLQFSFFFKFLRFYDAYRNKPWIIPIKFLFLHFSVNQNFNK  1450
1451  IKNIIEKKRRIDIFKPWKKKKILEVELETPNRAKKEYTSRVDLNKPSLSN  1500
1501  QEKDIEEDYGESDSKKGGKDKNKKKYKNKIEAEVNLLLRKYLNFHLNWKG  1550
1551  SLNKRVINNVKVYCLLIRLKNIKQIAISSIQRGELSLDIMMIQNEKDSTL  1600
1601  TGFRKKKEFIEKGIFIIEPVRLSRKNNEQFFMYETARLLLIHKSKRQINQ  1650
1651  RNPEKSDLDKQIFYKNIPPKRDQRITQNKEKKHYALVVIENILSARRRRE  1700
1701  LRILICFNPRSINSMPRKTIFDNENKINNCCQVFAKNKDLDKEKKILMNL  1750
1751  KLILWPNYRLEDLACINRYWFDTYNGSRFSIVRIHMYPRLKMR         1793
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold.  Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus.  Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them).  The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation).  Another benchmark is available in the Bioinformatics 2007 paper. | 
| NucPred score threshold |  Specificity |  Sensitivity | 
 | see above |  fraction of proteins predicted to be nuclear that actually are nuclear |  fraction of true nuclear proteins that are predicted (coverage) | 
 | 0.10 |  0.45 |  0.88 | 
 | 0.20 |  0.52 |  0.83 | 
 | 0.30 |  0.57 |  0.77 | 
 | 0.40 |  0.63 |  0.69 | 
 | 0.50 |  0.70 |  0.62 | 
 | 0.60 |  0.71 |  0.53 | 
 | 0.70 |  0.81 |  0.44 | 
 | 0.80 |  0.84 |  0.32 | 
 | 0.90 |  0.88 |  0.21 | 
 | 1.00 |  1.00 |  0.02 | 
| Sequences which score >= 0.8 with NucPred and which
                are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%.  (PredictNLS by itself is 87% correct with 26% coverage on the same data.) | 
Go back to the NucPred Home Page.