SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9BXT5 from www.uniprot.org...

The NucPred score for your sequence is 1.00 (see score help below)

   1  MPSDAKDSVNGDLLLNWTSLKNILSGLNASFPLHNNTGSSTVTTSKSIKD    50
51 PRLMRREESMGEQSSTAGLNEVLQFEKSSDNVNSEIKSTPSNSASSSEVV 100
101 PGDCAVLTNGLDTPCFKTSVNDSQSWAHNMGSEDYDCIPPNKVTMAGQCK 150
151 DQGNFSFPISVSNVVSEVENQNHSEEKAQRAQQESGNAYTKEYSSHIFQD 200
201 SQSSDLKTIYQTGCQTSTVFPLKKKVSIDEYLQNTGKMKNFADLEDSSKH 250
251 EEKQTSWKEIDNDFTNETKISPIDNYIVLHQEYKESESHNSFGKSCDKIL 300
301 ITQELEITKSSTSTIKDKDELDHLALEWQITPSFESLSQKHPQHSVEYEG 350
351 NIHTSLAIAQKLMELKLGKINQNYASIITEAFPKPKDIPQAKEMFIDTVI 400
401 SSYNIETAHDSSNCSITREHICVHRKNENEPVSLENIQRDYKETAYVEDR 450
451 GQDHNLFCNSQLSNDIWLNVNFKKQTDRENQNEAKENSASCVENNIENIY 500
501 GDKKQDSHTNENFSNIDEKEDKNYHNIEILSSEEFSTKFNLICREDNAVS 550
551 AATALLESEEDTISAVKQKDTENTGRSVEHLASTTFPKTASSSVCVASNA 600
601 AIQIASATMPALSLNNDDHQIYQFKETCSSESPDFGLLVKHRVSDCEIDT 650
651 DKNKSQESFHQSINENLVLQSIELESEIEIELEDCDDAFIFQQDTHSHEN 700
701 MLCEEFVTSYKALKSRISWEGLLALDNGEMEVLESTTGRENSDQHYSKES 750
751 NYFYSSTQNNETELTSPILLPDLQIKITNIFRPGFSPTADSLALKDSFCT 800
801 HVTEATKPEINKEDGEILGFDIYSQPFGENADYPCEDKVDNIRQESGPVS 850
851 NSEISLSFDLSRNTDVNHTSENQNSESLFTEPSNVTTIDDGSRCFFTKSK 900
901 TDYNDTKNKKEVESRISKRKLHISSRDQNIPHKDLRRHKIYGRKRRLTSQ 950
951 DSSECFSSLSQGRIKTFSQSEKHIKSVLNILSDEASLCKSKCLSRKLDKA 1000
1001 VVHLKKAHRRVHTSLQLITKVGEERKGPLPKSYAIICNNFWESCDLQGYS 1050
1051 SVSQRKYYSTKHFSSKRKYDKRRKKRAPKADISKSLTHVSKHKSYKTSGE 1100
1101 KKCLSRKSMASSVSKSHPTTSHMGEFCNQEHPESQLPVSSTSQSTSQSVY 1150
1151 YNSSVSNPSLSEEHQPFSGKTAYLFSPDHSDEKLIEKENQIDTAFLSSTS 1200
1201 KYEKLEKHSANHNVKDATKENSCDANEVINESNSVSLSCIKENINSSTGN 1250
1251 DCDATCIGHTKAKTDVLISVLDSNVKHFLNDLYQQGNLILSDCKRNLEVK 1300
1301 WTDPIERPKQNIITGNFLMGPLNLTLIASKKYSIPQLSAAAVTDSEGESS 1350
1351 KSYLDKQRILTVDSFAASSTVPHCEQSCREKELLKTEQCSSGNCLHTDGN 1400
1401 ETNVTENYELDVASGTEEDKSYGENIVELSSSDSSLLLKDNVKGSSSETC 1450
1451 IVKKDTEDRITWKVKQAEKAKDSVYKRSMTEGSTVNTEYKNQKNQISEES 1500
1501 CLNEKIITTNLIDSHLSTKNTTTESVPLKNTVSNPLNKREKKGEIKVSKD 1550
1551 SQSDLTLHSEIAYISKPGILGVNHTPILPAHSETCKVPTLLKKPASYVSD 1600
1601 FKEKHCSANHTALIANLSQILQRADEASSLQILQEETKVCLNILPLFVEA 1650
1651 FERKQECSVEQILISRELLVDQNLWNNCKHTLKPCAVDTLVELQMMMETI 1700
1701 QFIENKKRHLEGEPTLRSLLWYDETLYAELLGKPRGFQQQSNFYPGFQGR 1750
1751 LKYNAFCELQTYHDQLVELLEETKREKNSYYVFLKYKRQVNECEAIMEHC 1800
1801 SDCFDFSLSVPFTCGVNFGDSLEDLEILRKSTLKLINVCGDSPKVHSYPG 1850
1851 KQDHLWIIIEMISSKVNFIKNNEAVRVKISLYGLEHIFFDAAKNLVWKER 1900
1901 TQSFSKKYSQKKDEERLLRVNKCAFSKLQKIYDTLSKDLNNEPISPIGLE 1950
1951 EDTIIASRKSDHPINEATISIENSKFNSNLLAHPDICCISEILDQAEFAD 2000
2001 LKKLQDLTLRCTDHLEILKKYFQMLQDNNMDNIFITEENVLDVVINHSHE 2050
2051 AIILKPEAIEMYIEIVMVSETIHFLKNSIAKKLDKQRFRGMLWFDLSLLP 2100
2101 ELVQCQEKMASFSFLKDNSTDVCLWKVIETAVSELKKDLDIICKYNEAVN 2150
2151 CSYAIHLLSRELQELSEIKKLLKKSKYFISTYIDFVPYIASINYGSTVTE 2200
2201 LEYNYNQFSTLLKNVMSAPRKDLGKMAHIRKVMKTIEHMKMICTKNAELT 2250
2251 ISFFLCQMLYNRRKILQLKRKEKMNIHIVKPGENNNKFSISTMLPPVSEC 2300
2301 INKNISNSSKKRPSTVDKCEDSQEQQQDTTVSSCKKLKVDMKDVTKINRE 2350
2351 KATFKHPRTTGSHPKSENKIVPSSCDSLKRNHLTPKKVEMQRSLPGSLLP 2400
2401 LENPKDTCASKSESKIDLTVSSDHFSGQQENLNSMKKRNVNFSAAETKSD 2450
2451 KKDCAAFAICDQKSVHGTFSPDHGTLLQKFLKNSPDPTQKSCLSDINPET 2500
2501 DVSLVPDASVLSKPIFCFVKDVHPDLEMNDTVFELQDNDIVNSSIKNSSC 2550
2551 MTSPEPICIQNKIPTLQINKLQPTETESEDKYMKDTLNPNTVHTFGASGH 2600
2601 ITLNVNQGAEYSLSEQQNDKNSKVLMQNAATYWNELPQSACNPTYNSSEH 2650
2651 LFGTSYPYSAWCVYQYSNSNGNAITQTYQGITSYEVQPSPSGLLTTVAST 2700
2701 AQGTHSNLLYSQYFTYFAGEPQANGFVPVNGYFQSQIPASNFRQPIFSQY 2750
2751 ASHQPLPQATYPYLPNRFVPPEVPWVYAPWHQESFHPGH 2789

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.