 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9BYK8 from www.uniprot.org...
The NucPred score for your sequence is 0.70 (see score help below)
1 MAPPGSTLLPNSPAATRGPSLARLCALVDLCLGCSRCTQRLNESTYVLRR 50
51 VEHDCSREILLARFKQATKSKVWRVVGCRPTFPRPLCYQVCHYYSPGLGC 100
101 RRHRNRCTFARSREEALVWTFERQHNLQRLWLKAEVQGSGAQGGAGRAAD 150
151 AILTEFGGRFELLCSLCFRRCPPCICRVDPQGQCPEHGACPSLLAHVSAE 200
201 GRRKQQFVVVRPRPRAGQPPAYCRFVGRGQPCWRGESRCQFAHSAVEMAV 250
251 WEAEQLGGLQRGDLLTPPAPDGDGRTAPLGQPPGAQLYCPACLVTCHSQE 300
301 AFENHCASSEHAQMVAFDQALPWEHRSPPPGLSKFELCPKPDLCEYGDAC 350
351 TKAHSAQELQEWVRRTQAVELRGQAAWQDGLVPYQERLLAEYQRSSSEVL 400
401 VLAETLDGVRVTCNQPLMYQAQERKTQYSWTFAVHSEEPLLHVALLKQEP 450
451 GADFSLVAPGLPPGRLYARGERFRVPSSTADFQVGVRVQAASFGTFEQWV 500
501 VFDFGRRPVLLQKLGLQLGQGRRPGPCRNLALGHPEEMERWHTGNRHVVP 550
551 GVERTAEQTALMAKYKGPALALEFNRSSVASGPISPTNYRQRMHQFLYEE 600
601 EAAQQQLVAKLTLRGQVFLKTALQTPALNMLFAPPGALYAEVPVPSSLMP 650
651 DTDQGFLLGRAVSTALVAPVPAPDNTVFEVRLERRASSEQALWLLLPARC 700
701 CLALGLQPEARLVLEVQFQIDPMTFRLWHQAVDTLPEEQLVVPDLPTCAL 750
751 PRPWSVPPLRRGNRKQELAVALIAGWGPGDGRRVPPLLIYGPFGTGKTYT 800
801 LAMASLEVIRRPETKVLICTHTNSAADIYIREYFHSHVSGGHPEATPLRV 850
851 MYTDRPLSQTDPVTLQYCCLTDDRQAFRPPTRAELARHRVVVTTTSQARE 900
901 LRVPVGFFSHILIDEAAQMLECEALTPLAYASHGTRLVLAGDHMQVTPRL 950
951 FSVARARAAEHTLLHRLFLCYQQETHEVARQSRLVFHENYRCTDAIVSFI 1000
1001 SRHFYVAKGNPIHARGKVPPHPRHYPLMFCHVAGSPDRDMSMASWLNLAE 1050
1051 IAQVVEKVQEAYNTWPSCWGGREQRCICVVSHGAQVSALRQELRRRDLGQ 1100
1101 VSVGSFEILPGRQFRVVVLSTVHTCQSLLSPGALAPEFFTDARVLNTVLT 1150
1151 RAQSQLVVVGDAVALCSFGACGKLWESFIRECVERHSVCPEGLSMEQVEQ 1200
1201 GVAQRRRWPPRGTQAGAAGNWEAAPEPVGDLAEEQAAVVTAMVKAEPGDE 1250
1251 ALSPASRDITATTAQTEAAAAPAGDAVKEDVVPGACAAGAAAAAGVESTE 1300
1301 AEDAEADFWPWDGELNADDAILRELLDESQKVMVTVGEDGLLDTVARPES 1350
1351 LQQARLYENLPPAALRKLLHAEPERYRHCSFVPETFERASAIPLDDASSG 1400
1401 PIQVRGRLDCGMAFAGDEVLVQLLSGDKAPEGRLRGRVLGVLKRKRHELA 1450
1451 FVCRMDTWDPRIMVPINGSVTKIFVAELKDPSQVPIYSLRKGRLQRVGLE 1500
1501 RLTAEARHSRLFWVQIVLWRQGFYYPLGIVREVLPEASTWEQGLRILGLE 1550
1551 YSLRVPPSDQATITKVLQKYHTELGRVAGRREDCRAFLTFTVDPQGACNL 1600
1601 DDALSVRDLGPRCEVAVHITDVASFVPRDGVLDVEARRQGAAFYAPGREP 1650
1651 VPMLPASLCQDVLSLLPGRDRLAISLFLTMEKASGQLKSLRFAPSVVQSD 1700
1701 RQLSYEEAEEVIRQHPGAGRELPARLDSVDACVVAACYFSRLLRRHRLRS 1750
1751 DCFYEQPDEDGTLGFRAAHIMVKEYMIQFNRLVAEFLVGSECTRTVTPLR 1800
1801 WQPAPRSQQLKALCEKHGDRVPLSLHLGHHLHGGGGSPPDTRLHLLASLW 1850
1851 KQVQFAARTQDYEQMVDLVTTDDMHPFLAPAGRDLRKALERSAFGRCARG 1900
1901 HQQQGGHYSLQVDWYTWATSPIRRYLDVVLQRQILLALGHGGSAYSARDI 1950
1951 DGLCQAFSLQHALAQSYQRRARSLHLAVQLKAQPLDKLGFVVDVEAGSRC 2000
2001 FRLLFPSNRETLPDPCPVPYGSLQLAEHPHALAGRPGLRLLWRRRVYSAQ 2050
2051 GSSPPLPLPGTVPDPHTLAVETALWKQLLELVELQRWPEAAALIQEKGEA 2100
2101 SQRRELVQVQRSHCGHFLEVARELGSGDTLQVQLGTSLQHGFLVPSPQLW 2150
2151 TVAPGFSLCLEHVERPGDCFSGRVYRAPRDRYRDVDEYACVWEPFCALES 2200
2201 ATGAVAENDSVTLQHLSVSWEASRTPQGQLQGAFRLEAAFLEENCADINF 2250
2251 SCCYLCIRLEGLPAPTASPRPGPSSLGPGLNVDPGTYTWVAHGQTQDWDQ 2300
2301 ERRADRQEAPRRVHLFVHHMGMEKVPEEVLRPGTLFTVELLPKQLPDLRK 2350
2351 EEAVRGLEEASPLVTSIALGRPVPQPLCRVIPSRFLERQTYNIPGGRHKL 2400
2401 NPSQNVAVREALEKPFTVIQGPPGTGKTIVGLHIVFWFHKSNQEQVQPGG 2450
2451 PPRGEKRLGGPCILYCGPSNKSVDVLAGLLLRRMELKPLRVYSEQAEASE 2500
2501 FPVPRVGSRKLLRKSPREGRPNQSLRSITLHHRIRQAPNPYSSEIKAFDT 2550
2551 RLQRGELFSREDLVWYKKVLWEARKFELDRHEVILCTCSCAASASLKILD 2600
2601 VRQILVDEAGMATEPETLIPLVQFPQAEKVVLLGDHKQLRPVVKNERLQN 2650
2651 LGLDRSLFERYHEDAHMLDTQYRMHEGICAFPSVAFYKSKLKTWQGLRRP 2700
2701 PSVLGHAGKESCPVIFGHVQGHERSLLVSTDEGNENSKANLEEVAEVVRI 2750
2751 TKQLTLGRTVEPQDIAVLTPYNAQASEISKALRREGIAGVAVSSITKSQG 2800
2801 SEWRYVLVSTVRTCAKSDLDQRPTKSWLKKFLGFVVDPNQVNVAVTRAQE 2850
2851 GLCLIGDHLLLRCCPLWRSLLDFCEAQQTLVPAGQVRVCRRPTMPS 2896
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.