SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9BZ72 from www.uniprot.org...

The NucPred score for your sequence is 0.95 (see score help below)

   1  MIIKEYRIPLPMTVEEYRIAQLYMIQKKSRNETYGEGSGVEILENRPYTD    50
51 GPGGSGQYTHKVYHVGMHIPSWFRSILPKAALRVVEESWNAYPYTRTRFT 100
101 CPFVEKFSIDIETFYKTDAGENPDVFNLSPVEKNQLTIDFIDIVKDPVPH 150
151 NEYKTEEDPKLFQSTKTQRGPLSENWIEEYKKQVFPIMCAYKLCKVEFRY 200
201 WGMQSKIERFIHDTGLRRVMVRAHRQAWCWQDEWYGLSMENIRELEKEAQ 250
251 LMLSRKMAQFNEDGEEATELVKHEAVSDQTSGEPPEPSSSNGEPLVGRGL 300
301 KKQWSTSSKSSRSSKRGASPSRHSISEWRMQSIARDSDESSDDEFFDAHE 350
351 DLSDTEEMFPKDITKWSSNDLMDKIESPEPEDTQDGLYRQGAPEFRVASS 400
401 VEQLNIIEDEVSQPLAAPPSKIHVLLLVLHGGTILDTGAGDPSSKKGDAN 450
451 TIANVFDTVMRVHYPSALGRLAIRLVPCPPVCSDAFALVSNLSPYSHDEG 500
501 CLSSSQDHIPLAALPLLATSSPQYQEAVATVIQRANLAYGDFIKSQEGMT 550
551 FNGQVCLIGDCVGGILAFDALCYSNQPVSESQSSSRRGSVVSMQDNDLLS 600
601 PGILMNAAHCCGGGGGGGGGGGSSGGGGSSGGSSLESSRHLSRSNVDIPR 650
651 SNGTEDPKRQLPRKRSDSSTYELDTIQQHQAFLSSLHASVLRTEPCSRHS 700
701 SSSTMLDGTGALGRFDFEITDLFLFGCPLGLVLALRKTVIPALDVFQLRP 750
751 ACQQVYNLFHPADPSASRLEPLLERRFHALPPFSVPRYQRYPLGDGCSTL 800
801 LADVLQTHNAAFQEHGAPSSPGTAPASRGFRRASEISIASQVSGMAESYT 850
851 ASSIAQKAPDALSHTPSVRRLSLLALPAPSPTTPGPHPPARKASPGLERA 900
901 PGLPELDIGEVAAKWWGQKRIDYALYCPDALTAFPTVALPHLFHASYWES 950
951 TDVVSFLLRQVMRHDNSSILELDGKEVSVFTPSKPREKWQRKRTHVKLRN 1000
1001 VTANHRINDALANEDGPQVLTGRFMYGPLDMVTLTGEKVDVHIMTQPPSG 1050
1051 EWLYLDTLVTNNSGRVSYTIPESHRLGVGVYPIKMVVRGDHTFADSYITV 1100
1101 LPKGTEFVVFSIDGSFAASVSIMGSDPKVRAGAVDVVRHWQDLGYLIIYV 1150
1151 TGRPDMQKQRVVAWLAQHNFPHGVVSFCDGLVHDPLRHKANFLKLLISEL 1200
1201 HLRVHAAYGSTKDVAVYSAISLSPMQIYIVGRPTKKLQQQCQFITDGYAA 1250
1251 HLAQLKYSHRARPARNTATRMALRKGSFGLPGQGDFLRSRNHLLRTISAQ 1300
1301 PSGPSHRHERTQSQADGEQRGQRSMSVAAGCWGRAMTGRLEPGAAAGPK 1349

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.