 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9C000 from www.uniprot.org...
The NucPred score for your sequence is 0.83 (see score help below)
1 MAGGAWGRLACYLEFLKKEELKEFQLLLANKAHSRSSSGETPAQPEKTSG 50
51 MEVASYLVAQYGEQRAWDLALHTWEQMGLRSLCAQAQEGAGHSPSFPYSP 100
101 SEPHLGSPSQPTSTAVLMPWIHELPAGCTQGSERRVLRQLPDTSGRRWRE 150
151 ISASLLYQALPSSPDHESPSQESPNAPTSTAVLGSWGSPPQPSLAPREQE 200
201 APGTQWPLDETSGIYYTEIREREREKSEKGRPPWAAVVGTPPQAHTSLQP 250
251 HHHPWEPSVRESLCSTWPWKNEDFNQKFTQLLLLQRPHPRSQDPLVKRSW 300
301 PDYVEENRGHLIEIRDLFGPGLDTQEPRIVILQGAAGIGKSTLARQVKEA 350
351 WGRGQLYGDRFQHVFYFSCRELAQSKVVSLAELIGKDGTATPAPIRQILS 400
401 RPERLLFILDGVDEPGWVLQEPSSELCLHWSQPQPADALLGSLLGKTILP 450
451 EASFLITARTTALQNLIPSLEQARWVEVLGFSESSRKEYFYRYFTDERQA 500
501 IRAFRLVKSNKELWALCLVPWVSWLACTCLMQQMKRKEKLTLTSKTTTTL 550
551 CLHYLAQALQAQPLGPQLRDLCSLAAEGIWQKKTLFSPDDLRKHGLDGAI 600
601 ISTFLKMGILQEHPIPLSYSFIHLCFQEFFAAMSYVLEDEKGRGKHSNCI 650
651 IDLEKTLEAYGIHGLFGASTTRFLLGLLSDEGEREMENIFHCRLSQGRNL 700
701 MQWVPSLQLLLQPHSLESLHCLYETRNKTFLTQVMAHFEEMGMCVETDME 750
751 LLVCTFCIKFSRHVKKLQLIEGRQHRSTWSPTMVVLFRWVPVTDAYWQIL 800
801 FSVLKVTRNLKELDLSGNSLSHSAVKSLCKTLRRPRCLLETLRLAGCGLT 850
851 AEDCKDLAFGLRANQTLTELDLSFNVLTDAGAKHLCQRLRQPSCKLQRLQ 900
901 LVSCGLTSDCCQDLASVLSASPSLKELDLQQNNLDDVGVRLLCEGLRHPA 950
951 CKLIRLGLDQTTLSDEMRQELRALEQEKPQLLIFSRRKPSVMTPTEGLDT 1000
1001 GEMSNSTSSLKRQRLGSERAASHVAQANLKLLDVSKIFPIAEIAEESSPE 1050
1051 VVPVELLCVPSPASQGDLHTKPLGTDDDFWGPTGPVATEVVDKEKNLYRV 1100
1101 HFPVAGSYRWPNTGLCFVMREAVTVEIEFCVWDQFLGEINPQHSWMVAGP 1150
1151 LLDIKAEPGAVEAVHLPHFVALQGGHVDTSLFQMAHFKEEGMLLEKPARV 1200
1201 ELHHIVLENPSFSPLGVLLKMIHNALRFIPVTSVVLLYHRVHPEEVTFHL 1250
1251 YLIPSDCSIRKAIDDLEMKFQFVRIHKPPPLTPLYMGCRYTVSGSGSGML 1300
1301 EILPKELELCYRSPGEDQLFSEFYVGHLGSGIRLQVKDKKDETLVWEALV 1350
1351 KPGDLMPATTLIPPARIAVPSPLDAPQLLHFVDQYREQLIARVTSVEVVL 1400
1401 DKLHGQVLSQEQYERVLAENTRPSQMRKLFSLSQSWDRKCKDGLYQALKE 1450
1451 THPHLIMELWEKGSKKGLLPLSS 1473
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.