SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9C1M7 from www.uniprot.org...

The NucPred score for your sequence is 0.87 (see score help below)

   1  MTDDQVAQALVGYVFNVAKLFLKLGAEQDAFARTHGAKFEEWVGNGNMRT    50
51 LFLVKDEEGEVQVLEELEGPEAEGPEQSGRLLLIKNRPFVDGSAPMESQV 100
101 QVLHLPPRAHFDGFKSFVSFGVATMFDAVVSTNSNLEAKQESINSARRKI 150
151 KDLSLSLQSLQQFIEVPDISATAHPLIKKIIAEGANPRNYTTYISDEQFA 200
201 DSQFLNSLQKIANGWIKSAQNLTKLTRNIEDGSATDEIRFWINLEQSLLA 250
251 LEKQIAIPEVEITLSILTAAKRFHATVTFISDTGLRDRILETQSYNQIMS 300
301 DFPLADLQTATSFTKLGEAIESISIALKKLKVSTYPLARAVTFVEKISTE 350
351 LDQKLREMLPNLISSDFISFQEDYDHCIKIINQWEALLKEFTSLIRELMR 400
401 KRSEKFIFMKIDTQTDSLKEVLNTVAAFRKKHDILIHVLKGIGYDTLSED 450
451 IQSIYEPVQYQDPLRDNASKWANAEAAYNQRVSLLENKLVDMLKKKLDDC 500
501 KSSDSMFSIFEKYRPLMKRPRIQGAVREYQHELLHNVKDDLEHIHQQLSL 550
551 QKWNSELSRLNDIPPVSASIIWSKQLTKKLQNLTSRLGLILGEDWISTSE 600
601 GSQIFVECSSIMKVLNTDKLFETWVSNVSSQNFLLDEPIFKILITNEEYE 650
651 LHVNFDSVVGSLFKEVRNLMWMGFNVPSNIIKNSRRVRSLYPHAVMVSEL 700
701 LQTFVSAVQSFQERPHTWLLLKDETENIWQLLSAMITDTWDSVPLFEDDA 750
751 SHERAEDIQRDEPSILRLEHSIGELLSKFQQLDGLEKGLSSCLQQLEVFG 800
801 KLDLQNLEVLINKIQLLVDQATLHGFHNMSGFIDYLNTRIRSYLVSTVSK 850
851 ILEESQLSPKKHYILQQGKKVTISPSIEETKKAWMRDFQKTLEVATNLPK 900
901 ITDKKFDITEGQMENFTDIGTDLSESLIKAFLRIEDACHAIDEHFQKWKK 950
951 LELLWCLDELTLLERLGSDVEVSYRFLLDFMEERKAIDMVDSEITIAGDT 1000
1001 MINNEQVYVRVSAKYDNWQRVLCEKLLENYMDHASEFDTQLVHSRRLLET 1050
1051 SIINLGSLSKTTELIAYVDDIKNNLDLMFTRYSLLLNTQKLLQKLRFRIP 1100
1101 QNFIHAEQIESDLVSLREICLRKEDLINKNRDAISNKLEAELLKIQEVAN 1150
1151 SLSQSWSKKKPLSVSIQPSEALSVLNTFEDSIAKVNTERELINRAAKILL 1200
1201 VPIKLQNVLSPVIEEVNDYKAVWSSVDGLWNSFNATLSVKWADFESTAVK 1250
1251 HRLEALMKKCQDMPPKVLQYKIFQNIAGSIEATLKSMHLLKALKEPAIKP 1300
1301 RHWSILFKQLGASHIVSGNIDDQTFTLEDILQLNILLNEVSVKKIVIKAR 1350
1351 NENVLESSLSQMKARWRATKFDQFVHSSGLVLVKGWDVIFSNCNDDLNMI 1400
1401 TSMKNSPYFKVFEQEALEWETKLSNFYDIVLSWVEVQRQWMYLFGILAKK 1450
1451 TEMKNLLPIEASKFASLTSEYNSLLLKLYGSEIAIDILHVHSTLPTLKRM 1500
1501 AESLTKIRKSLNDFLETQRRLFPRFYFVGNEDLLQIIGAGDNFSEFSRHL 1550
1551 SKLFSSVSDFIYDESLIQGVYSLEGETLLFANPVRVTPSSKLDQWMNEVD 1600
1601 LEIKLTLSTLVKNCLESYRTSGSLKHIIEKYPFQALLLALQCTWTNKIET 1650
1651 SMTKDNFGSICSSIDEEMASLAAVIDSYPTVTEKRKVESLIVELVHLKTI 1700
1701 TETLKNVELEQIDFHWKQTQRFYWDDNSNDPLNSITIEQSCVSFCYGFEY 1750
1751 IGVPERLIYTPLLDSCFNAMVLALSEHMGGCPFGPAGTGKTETIKALGQN 1800
1801 FGRMVLVFNCDDSFDFQAMSRLLFGITQVGAWGCFDEFNRLEEKILSAVS 1850
1851 TQVEAIQLSLVQGKPEIEVLDKKGSLNSNTGIFITMNPGYAGRSELPENL 1900
1901 KKMFREFAMMKPDALVIAEVILTILGLENPRVLAEKIVSLFKLLNDKTTS 1950
1951 QKHYDFGLRALKSVLRNCLTILRSTTDLDSTQVLLRSLNEMVVPKLISVD 2000
2001 EAVYEEAIADFFPGSRIKPSNEQLLSYLASYCESNQLVASDLFIKKCSQF 2050
2051 YDIQKTQQAIILAGDAGTGKTSVWKSVINSMKRSGAKENIVYIIDTKTLK 2100
2101 KEDLYGKLDPVTFDWKDGIFTHLLRKTLLDTMGNFKNSNIWIVFDSDLDP 2150
2151 NYTETLNSVLDDNKVLTLPNGERLKIPPNLHILFEVQDLEHATAATVSRC 2200
2201 GMIWFANNTLAAQDILISCLSREVATLQQDADVHDNIIATIQDIFAQFIQ 2250
2251 GSTLGNVIEATYKADHIMGVDFCRFIETAVTLLSCDIKKNKKQLSRLSQV 2300
2301 ACVRYMSKRLALVLIWAFVGGSDLETREKFSETICELLGISDIPTGSKFL 2350
2351 LDYDVSVATQDWVPVSAEVPKTSLESHEVLIPDLIIPTVDTVRHETLLFD 2400
2401 LLNADRPLILCGPPGSGKTMTLYNTLKRSDRFNIIGINFSKDTSVELFLK 2450
2451 TLEQHTICTPTSRGIIMQPKAHGKQLVVFCDEINLPMLDEYGSQPVILFL 2500
2501 RQLIEKRGFWNVQESKWVFIERIQIVGACNPPGHAGRVSITPRFLRHASI 2550
2551 VMVDYPGQIAMEQIYETFFNAIFKLTPKLKGFASDFTKASLQVYYDCKAT 2600
2601 YTSEAHSHYIYSPRELTRWVRGIHFTISDSGNIDLAYMLELWAHESLRLF 2650
2651 SDRLVSSSEKNIFQSILQNAITTHFPNQPLGSLESSQLLFSNWLSLNYSK 2700
2701 VVKSEMYTFIKERLKTFAEEELDTELTIYDDMIDNILRIDRILKQVQGHG 2750
2751 ILVGPNYSGKTTITRFVAWMNGIKVVRPTIHRHFTIENFDEFLKQMLLRC 2800
2801 GTESEKICLIIDESNILETSFLERMNTLLANSDVPGLFEADEYEALLSKI 2850
2851 GQRISQLGLLLDTEQEMYDWFTSEISKNLHVIFNINDPDNRESTQLITSP 2900
2901 ALFNRSVINWIGTWSSRSCLHVVNEVIKNMPLDRADYTIPHHAAANLIVP 2950
2951 DGNLVTIRDVVANLFVLFHEQYHRLLGNSQGSPSAFLTSLRRFQSLYMSK 3000
3001 LKELEEHQRFTLVGLEKLKDTVIKVKQLNQSLSQKQVELQQKEKEARDTL 3050
3051 DKMLVDQNEAERKQEASVEIQKILALQEKEINERRKIIMADLAVAEPAIL 3100
3101 EAQRGVKNIKKQQFTELRSMLNPPDAVKTTLEAVCVILGYSCKTWKDIQL 3150
3151 AIRKDEFVTDIVYYNTETMMTPAMKQDIETDYLSRPKFNYESVNRASLAC 3200
3201 GPLYQWIVAQISYSEMLVKVTPLKEEMVKVENEMLQNKARLMAAGEMIKE 3250
3251 LQTSIESSKVSYSKLIREVEITKTEMESVQSKVERSIKLMESLTGEKERW 3300
3301 IKNTEHFKDWNKNLIGNCFLSSLYESYCGPHDQSLRLKLFTIWSNTLAKF 3350
3351 GIEYEPTYSFITDMVNPLTKVNWVACGLPDNELFVANFHIAMNSCHYPYV 3400
3401 IDPSSTIVDTFANFYGRKMMITSFLDVGFVKQLENALRFGGCILIQDGEF 3450
3451 FDPIISHLIAKEFKKAGGRLTVQIGDHEVDVSTSFQLIIHSKDPNSYMSS 3500
3501 FVKTRMAVINFTVSKGSIEAQALQITLEKENPELQKQRTDLLKLNGEYKL 3550
3551 HLRSLEDKLLESLNESDGSILENDSLISTLEQLKIESSEIAKKIEETNTV 3600
3601 IVKVEDLVNEYNVLGEQSVLIFNLLESITQWHWFYQIPIEQFMECFSSIF 3650
3651 ATKTRENMTRSEHLLLALYEHVYMWFSHVFKDRDRMAFGILLFASYHHSR 3700
3701 ESKFFSEHFWKIIEGIASDTLGTVEHITDTKLEQLVAAANEKDYLKGLKS 3750
3751 LLEFLPESSWHDSVPKYQNIIVACERGVDGTFKVQQLAQEMGKTVHSVAL 3800
3801 GSAESISMAEQDLIQYSGEGKWLLLQNLQMSHEWANTVLPKKLESIKANP 3850
3851 DFRVFMTCGIQSKPLVVPLLSRSYKIAYEGEPGVLNTVCELWRTQSEELK 3900
3901 NVKPVEKLHSKFILVWFHSIIMARCRLAPIGFTKKYDFHDGDFHAGSKFL 3950
3951 DHIFEQSSNGKEHVDPDLVPWKLVSDTIGKIIYGGKVDDPADLDWCKRSA 4000
4001 RRMFSSDAYLNNFEVVQGLTVPIDRSSYSQYDKWFKSLDAAAERTTAWLE 4050
4051 LSDASALQNFYAHEARMICKKIIQTNGPTSLIH 4083

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.