 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9D219 from www.uniprot.org...
The NucPred score for your sequence is 0.80 (see score help below)
1 MHPSNPKVRSSPSGNTQSSPKSKQEVMVRPPTVMSPSGNPQLDSKFSNQG 50
51 KPGGSASQSQPSPCDSKSGGHTPKALPGPGGSMGLKNGAGNGAKGKGKRE 100
101 RSISADSFDQRDPGTPNDDSDIKECNSADHIKSQESQHTPHSMTPSTATA 150
151 PRSSTPSHGQTPAPEPISAQKTPAKVVYVFSTEMANKAAEAVLKGQVETI 200
201 VSFHIQNISNSKSERSTAPLNTQIPTLRNDPKPLPQQPPAPANQDQNSSQ 250
251 NARLQPTPPIQAPAPKPTAAPRPLDRESPGVENKLIPPVGSPGSSTPLPP 300
301 DGTGPNSTPNNRAVTPVSQGSNSSSADPKAPPPPPVSGGEPPTLGENPDG 350
351 LSQEQLEHRERSLQTLRDIQRMLFPDEKEFTAGQTGGPQQNTGVLDGPQK 400
401 KPDGPIQAMMSQSQSLGKGPGPRTDVGAPFGPQGHRDVPFSPDEMVPPNM 450
451 SSQSGPIGPDHLDHMTPEQIAWLKLQQEFYEEKRRKQEQVVVQQCSLQDM 500
501 MVHQHGPRGVVRGPPPPYQMAPGEGWAPGAEPFPDGINISHSLPPRGMAP 550
551 HPNMPGSQMRLPGFAGMINSEMEGPNVPNPASRPGLSGVSWPDDVPKIPD 600
601 GRNFPPGQGVFSGPGRGERFPNPQGLSEEMFQQQLAEKQLALPPGMSMEG 650
651 IRPGMEMNRMIPGSQRHMEPGSNPIFPRIPVEGPLSPSRGDFPKGMPPQI 700
701 GPGRELEFGMVPGGMKGEVNLNVNMGSSSQMIPQKMREAGAGPEEMMKLR 750
751 PGSSEMLPAQQKMVPLPFGEHPQQEYGVGPRPFLPMSQGPGSNSGLRNLR 800
801 EPIGPDQRTNSRLSHMPPLPLNPSSNPTSLSTAPPVQRGLGRKPLDISVA 850
851 GSQVHSPGINPLKSPTMHQVQSPMLGSPSGNLKSPQTPSQLAGMLAGPAA 900
901 AASIKSPPVLGSAAASPVHLKSPSLPAPSPGWTSSPKPPLQSPGIPPNHK 950
951 APLTMASPAMLGSVESGGPPPPTASQPASVNIPGSLPSSTPYPMPPEPTL 1000
1001 SQNPLSIMMSRMSKFAMPSSTPLYHDAIKTVASSDDDSPPARSPNLPSMN 1050
1051 SMPGMGINTQNPRISGPNPVVPMPTLSPMGMTQPLSHSNQMPSPNAMGPS 1100
1101 IPPHGVPMGPGLMSHNPIMGHGSQEPPMVPQGRMGFPQGFPPVQSPPQQV 1150
1151 PFPHNGPTGGQGNFPGGIGFPGEGPLGRPSNLPQSSADPALCKPGGPGAP 1200
1201 DSFTVLGNSMPSVFTDPDLQEVIRPGATGIPEFDLSRIIPSEKPSQTLQY 1250
1251 FPRGEVPGRKQPQGPGPGFSHMQGMMSDQAPRMGLALPGMGGPGPVGTPD 1300
1301 IPLGTSPSMPGHNPMRPPAFLQQGMMGPHHRMMSPAQSTVPGPATLMTNP 1350
1351 AAAVGMIPGKDRGPAGLYTHPGPVGSPGMMMSMQGMMGPQQNIMIPPQMR 1400
1401 PRGMAADVGMGGFSQGPGNPGNMMF 1425
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.