 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9DE46 from www.uniprot.org...
The NucPred score for your sequence is 0.78 (see score help below)
1 MSDSGSFAASRSRREKTEKSGRKEALERLKRAKAGEKVKYEVEQVSSIYE 50
51 EVDEAEYSKLVRDRQDDDWIVDDDGTGYVEDGREIFDDDLEDNALADSGK 100
101 GAKGAPKDKTNVKKSSVSKPNNIKSMFMASAVKKTTDKAVDLSKDDLLGD 150
151 LLQDLKSQAVPITPPPVITLKKKKLAGSPLNPFSVPPTAPKVLPTSVKRL 200
201 PAVTKPGHPAAQSKASVPRQIKKEPKAELISSAVGPLKVEAQVKEEDSGM 250
251 VEFDDGDFDEPMEEDVEITPVDSSTIKTQAQSIKCVKEENIKEEKSSFIT 300
301 SATLNESCWDQIDEAEPMTTEIQVDSSHLPLVTGADGSQVFRFYWLDAYE 350
351 DQYSQPGVVYLFGKVWIESADAYVSCCVSVKNIERTVYLLPRENRVQLST 400
401 GKDTGAPVSMMHVYQEFNEAVAEKYKIMKFKSKKVDKDYAFEIPDVPASS 450
451 EYLEVRYSADSPQLPQDLKGETFSHVFGTNTSSLELFLLSRKIKGPSWLE 500
501 IKSPQLSSQPMSWCKVEAVVTRPDQVSVVKDLAPPPVVVLSLSMKTVQNA 550
551 KTHQNEIVAIAALVHHTFPLDKAPPQPPFQTHFCVLSKLNDCIFPYDYNE 600
601 AVKQKNANIEIALTERTLLGFFLAKIHKIDPDVIVGHDIYGFDLEVLLQR 650
651 INSCKVPFWSKIGRLRRSVMPKLGGRSGFAERNAACGRIICDIEISAKEL 700
701 IRCKSYHLSELVHQILKAERVVIPPENIRNAYNDSVHLLYMLENTWIDAK 750
751 FILQIMCELNVLPLALQITNIAGNVMSRTLMGGRSERNEYLLLHAFTENN 800
801 FIVPDKPVFKKMQQTTVEDNDDMGTDQNKNKSRKKAAYAGGLVLEPKVGF 850
851 YDKFILLLDFNSLYPSIIQEYNICFTTVHREAPSTQKGEDQDEIPELPHS 900
901 DLEMGILPREIRKLVERRRHVKQLMKQPDLNPDLYLQYDIRQKALKLTAN 950
951 SMYGCLGFSYSRFYAKPLAALVTHQGREILLHTKEMVQKMNLEVIYGDTD 1000
1001 SIMINTNCNNLEEVFKLGNRVKSEINKSYKLLEIDIDGIFKSLLLLKKKK 1050
1051 YAALTVEPTGDGKYVTKQELKGLDIVRRDWCELAKQAGNYVISQILSDQP 1100
1101 RDSIVENIQKKLTEIGENVTNGTVPITQYEINKALTKDPQDYPDKKSLPH 1150
1151 VHVALWINSQGGRKVKAGDTISYVICQDGSNLSASQRAYAQEQLQKQENL 1200
1201 SIDTQYYLSQQVHPVVARICEPIDGIDSALIAMWLGLDPSQFRAHRHYQQ 1250
1251 DEENDALLGGPSQLTDEEKYRDCERFKFFCPKCGTENIYDNVFDGSGLQI 1300
1301 EPGLKRCSKPECDASPLDYVIQVHNKLLLDIRRYIKKYYSGWLVCEEKTC 1350
1351 QNRTRRLPLSFSRNGPICQACSKATLRSEYPEKALYTQLCFYRFIFDWDY 1400
1401 ALEKVVSEQERGHLKKKLFQESENQYKKLKSTVDQVLSRSGYSEVNLSKL 1450
1451 FQTLNTIK 1458
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.