SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9DEY9 from www.uniprot.org...

The NucPred score for your sequence is 0.98 (see score help below)

   1  MAALPQNNLQKQLELFPAKGTSNKLSLQKTKSSVFTFKKKCSPNVSASTG    50
51 FIPFQQHVLKDKNVNVKQDGTHTALPKATERNKINCFFTPVYTKSGQPPQ 100
101 VVALKDHVHGNDSANKPPSTEDAASKKTGINTSFGSVTSLEEWDDLDDFD 150
151 TSVSPPKSHAGKGGKTPQKCKNTSPVASFKIQSISPEGPTTEKHDCAKLL 200
201 YDNNEVASEPRKNLHAKTAESPDQSLVCLASVEPTNLERDMCRNTDYLGT 250
251 DDLEHDQETLSQVLIEEEDDCEPDFIPPSPSDESLSSPPVLKVISAQRKH 300
301 KVSSLTDVNDCENTTDHLQGQSVSTSLDSKVPSQLLTLMLEICDLVDKIP 350
351 ISELHVLSCGLDLKKKRDMRKRLLSNDSVFRSSPADSSTVSLTSCTSSTQ 400
401 NRDFNVNAPKGAESLSGSSVSKVFKFNKLAVHDIGTKESENSANSAPNFM 450
451 EKIGNKTSFSFRAGGDSIMENSFNFHSSVLSNSRFNTPQNEKPISSSTCT 500
501 RPYSQPIDDMDNPDLDFDIDNFDIEDLDDIHCLDSPAAPSVSSKNVPQYP 550
551 TIREAQLDSRNKEKNTRNNTGDTTNPSLLSDSLLKPQIENPAHERFRGFN 600
601 FPHSKEMMKIFHKKFGLHRFRTNQLEAINACLCGEDCFILMPTGGGKSLC 650
651 YQLPGCISPGVTIVISPLRSLIVDQVQKLTSLDIPATYLTGDKTDAEAAS 700
701 IYLQLSKKDPIIKLLYVTPEKVCASTRLISTMENLYERQLLARFVIDEAH 750
751 CVSQWGHDFRPDYKRLNVLRQKFQSVPMMALTATANPRVKKDILNQLKMT 800
801 KPQIFTMSFNRDNLKYEVLPKKPKRVALDCVEWIKKHHPNDSGIIYCLSR 850
851 HECDTMADTLQKEGLAALAYHAGLADSNRDYVQHKWINQDDCQVICATIA 900
901 FGMGIDKPDVRYVIHASLPKSVEGYYQESGRAGRDGETSHCLLFYSYHDV 950
951 TRIRRLIQMEKDGNSHTKQTHFNNLYSMVHYCENVVECRRMQLLSYFGEN 1000
1001 NFNPNFCKEHTQVACDNCLGKKNYKSRDVTDDVGNIVRFVQDNCSLVQGR 1050
1051 GKGRSNNTRLTLNMMVDIFLGSKSAKIQTGLFGKGAAYSRHNAERLFRKL 1100
1101 VLDRIIDEELYITFNDQAVAYVKMGERAQAVLNGFLKVDFQDTESASSIR 1150
1151 KQKASVVTNTSQREEMVKKCQAELTELCKRLGKIFGVHYFNIFNTATIRR 1200
1201 IAESLSPEPEVLLQIDGVTEDKLDKYGAELIDVLQKYSEWTLPVEDICQK 1250
1251 SGGPANVSARRSNSDHDDESCDKSSYFSSNNKKGPKRKNSSYFGKSKKRK 1300
1301 TGGDGQQSRSKNGNSSYARKNSTAKTSSSYISGSKTGADKRPGFMAPPMP 1350
1351 QPNRRFLKPSYSMF 1364

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.