SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9ES67 from www.uniprot.org...

The NucPred score for your sequence is 0.85 (see score help below)

   1  MSIRLPHSIDRSASKKQSHLSSPIASWLSSLSSLGDSTPERTSPSHHRQP    50
51 SDTSETTAGLVQRCVIIQKDQHGFGFTVSGDRIVLVQSVRPGGAAMKAGV 100
101 KEGDRIIKVNGTMVTNSSHLEVVKLIKSGAYAALTLLGSSPPSVGVSGLQ 150
151 QNPSVAGVLRVNPIIPPPPPPPPLPPPQHITGPKPLQDPEVQKHATQILW 200
201 NMLRQEEEELQDILPPCGETSQRTCEGRLSVDSQEADSGLDSGTERFPSI 250
251 SESLMNRNSVLSDPGLDSPQTSPVILARVAQHHRRQGSDAALLPLNHQGI 300
301 DQSPKPLIIGPEEDYDPGYFNNESDIIFQDLEKLKSHPAYLVVFLRYILS 350
351 QADPGPLLFYLCSEVYQQTNPKDSRSLGKDIWNIFLEKNAPLRVKIPEML 400
401 QAEIDLRLRNNEDPRNVLCEAQEAVMLEIQEQINDYRSKRTLGLGSLYGE 450
451 NDLLGLDGDPLRERQMAEKQLAALGDILSKYEEDRSAPMDFAVNTFMSHA 500
501 GIRLRESRSSCTAEKTQSAPDKDKWLPFFPKTKKQSSNSKKEKDALEDKK 550
551 RNPILRYIGKPKSSSQSIKPGNVRNIIQHFENSHQYDVPEPGTQRLSTGS 600
601 FPEDLLESDSSRSEIRLGRSGSLKGREEMKRSRKAENVPRPRSDVDMDAA 650
651 AEAARLHQSASSSASSLSTRSLENPTPPFTPKMGRRSIESPNLGFCTDVI 700
701 LPHLLEDDLGQLSDLEPEPEVQNWQHTVGKDVVANLTQREIDRQEVINEL 750
751 FVTEASHLRTLRVLDLIFYQRMRKENLMPREELARLFPNLPELIEIHNSW 800
801 CEAMKKLREEGPIIRDISDPMLARFDGPAREELQQVAAQFCSYQSVALEL 850
851 IRTKQRKESRFQLFMQEAESHPQCRRLQLRDLIVSEMQRLTKYPLLLENI 900
901 IKHTEGGTSEHEKLCRARDQCREILKFVNEAVKQTENRHRLEGYQKRLDA 950
951 TALERASNPLAAEFKSLDLTTRKMIHEGPLTWRISKDKTLDLQVLLLEDL 1000
1001 VVLLQRQEERLLLKCHSKTAVGSSDSKQTFSPVLKLNAVLIRSVATDKRA 1050
1051 FFIICTSELGPPQIYELVALTSSDKNIWMELLEEAVQNATKHPGAAPIPI 1100
1101 HPSPPGSQEPAYQGSTSSRVEINDSEVYHTEKEPKKLPEGPGPEQRVQDK 1150
1151 QLIAQGEPVQEEDEEELRTLPRAPPSLDGENRGIRTRDPVLLALTGPLLM 1200
1201 EGLADAALEDVENLRHLILWSLLPGHTVKTQAAGEPEDDLTPTPSVVSIT 1250
1251 SHPWDPGSPGQAPTISDSTRLARPEGSQPEGEDVAVSSLAHLPPRTRSSG 1300
1301 VWDSPELDRNPAAEAASTEPAASYKVVRKVSLLPGGGVGAAKVAGSNAIP 1350
1351 DSGQSESELSEVEGGAQATGNCFYVSMPAGPLDSSTEPTGTPPSPSQCHS 1400
1401 LPAWPTEPQPYRGVRGGQCSSLVRRDVDVIFHTIEQLTIKLHRLKDMELA 1450
1451 HRELLKSLGGESSGGTTPVGSFHTEAARWTDYSLSPPAKEALASDSQNGQ 1500
1501 EQGSCPEEGSDIALEDSATDTAVSPGP 1527

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.