 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9FHA3 from www.uniprot.org...
The NucPred score for your sequence is 0.93 (see score help below)
1 MSGDNSTETGRRRSRGAEASSRKDTLERLKAIRQGGIRSASGGGYDIRLQ 50
51 KPIFDTVDDEEYDALVSRRREEARGFVVEDGEGGDLGYLDEGEEEDWSKP 100
101 SGPESTDESDDGGRFSGRLKKKKKGKEQTQQPQVKKVNPALKAAATITGE 150
151 GRLSSMFTSSSFKKVKETDKAQYEGILDEIIAQVTPDESDRKKHTRRKLP 200
201 GTVPVTIFKNKKLFSVASSMGMKESEPTPSTYEGDSVSMDNELMKEEDMK 250
251 ESEVIPSETMELLGSDIVKEDGSNKIRKTEVKSELGVKEVFTLNATIDMK 300
301 EKDSALSATAGWKEAMGKVGTENGALLGSSSEGKTEFDLDADGSLRFFIL 350
351 DAYEEAFGASMGTIYLFGKVKMGDTYKSCCVVVKNIQRCVYAIPNDSIFP 400
401 SHELIMLEQEVKDSRLSPESFRGKLHEMASKLKNEIAQELLQLNVSNFSM 450
451 APVKRNYAFERPDVPAGEQYVLKINYSFKDRPLPEDLKGESFSALLGSHT 500
501 SALEHFILKRKIMGPCWLKISSFSTCSPSEGVSWCKFEVTVQSPKDITIL 550
551 VSEEKVVHPPAVVTAINLKTIVNEKQNISEIVSASVLCFHNAKIDVPMPA 600
601 PERKRSGILSHFTVVRNPEGTGYPIGWKKEVSDRNSKNGCNVLSIENSER 650
651 ALLNRLFLELNKLDSDILVGHNISGFDLDVLLQRAQACKVQSSMWSKIGR 700
701 LKRSFMPKLKGNSNYGSGATPGLMSCIAGRLLCDTDLCSRDLLKEVSYSL 750
751 TDLSKTQLNRDRKEIAPNDIPKMFQSSKTLVELIECGETDAWLSMELMFH 800
801 LSVLPLTLQLTNISGNLWGKTLQGARAQRIEYYLLHTFHSKKFILPDKIS 850
851 QRMKEIKSSKRRMDYAPEDRNVDELDADLTLENDPSKGSKTKKGPAYAGG 900
901 LVLEPKRGLYDKYVLLLDFNSLYPSIIQEYNICFTTIPRSEDGVPRLPSS 950
951 QTPGILPKLMEHLVSIRKSVKLKMKKETGLKYWELDIRQQALKLTANSMY 1000
1001 GCLGFSNSRFYAKPLAELITLQGRDILQRTVDLVQNHLNLEVIYGDTDSI 1050
1051 MIHSGLDDIEEVKAIKSKVIQEVNKKYRCLKIDCDGIYKRMLLLRKKKYA 1100
1101 AVKLQFKDGKPCEDIERKGVDMVRRDWSLLSKEIGDLCLSKILYGGSCED 1150
1151 VVEAIHNELMKIKEEMRNGQVALEKYVITKTLTKPPAAYPDSKSQPHVQV 1200
1201 ALRMRQRGYKEGFNAKDTVPYIICYEQGNASSASSAGIAERARHPDEVKS 1250
1251 EGSRWLVDIDYYLAQQIHPVVSRLCAEIQGTSPERLAECLGLDPSKYRSK 1300
1301 SNDATSSDPSTSLLFATSDEERYKSCEPLALTCPSCSTAFNCPSIISSVC 1350
1351 ASISKKPATPETEESDSTFWLKLHCPKCQQEDSTGIISPAMIANQVKRQI 1400
1401 DGFVSMYYKGIMVCEDESCKHTTRSPNFRLLGERERGTVCPNYPNCNGTL 1450
1451 LRKYTEADLYKQLSYFCHILDTQCSLEKMDVGVRIQVEKAMTKIRPAVKS 1500
1501 AAAITRSSRDRCAYGWMQLTDIVI 1524
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.