 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9FKS4 from www.uniprot.org...
The NucPred score for your sequence is 0.71 (see score help below)
1 MAKDDNNLSSLVHELRERVAASASTPANNLRHSSGDEDALEIRFRAVIPN 50
51 LLNTYVVPSLGNGREVTAVLKLVGHTARNIPGVFYHGTPSAILPVIARII 100
101 PFFAEPEFVPGHGVLLETVGSLLMLLRSNSRKAYRIFFHDALQAIQDMQP 150
151 IASLHSIEPEVCESHIPFRCFCMSFSGIGGDLPDANKPRDGDGLVLNLLG 200
201 ANRWQPFATCILKLICKCLTEGTLYVQGLIHTSFFKAACSLVCCGGADVQ 250
251 MACFEFATLVGSILTFNILPHVALIQSIILLLSADEGLPVYRNTIYDSTI 300
301 GRFLTAVYSSCSDAAVKLTAESLVLVLSHALQRTKSEELKASLCSAYVRI 350
351 VKSCPPCIWKIHCLLELLHLPEPCFQLIECFKAVLIVLGPGCVRVETTKC 400
401 GSHTSATSDRPVQGINAGKKRHIEDESTYKRKRQKVGDDIRRGVYFAPEF 450
451 ADETDGKDAASLREMLISTVESLKPPPAGPSLSQTESSIVALSMLTNAFC 500
501 FCPWTDMTHRLFNQMYAWIPWIAGQVEETNPIMFDISIYLEGIHNLLLVG 550
551 VDPQYEYTSKGNDLVAIQFLLKLPWTHYMLFKTPSSLVKSKCLSVGIWTK 600
601 LGLQDGSDFDIFSWSLSDDFEQVQAVAAISMPLKVLFSGLGALLHMFPKL 650
651 EHLLEEKELMIKKAIPQSLGFLSCLYGSSTTDSEKTACHLLLHEDLKKDE 700
701 TLNSLLQGFRCSKCDKFIEREDEKHFRIIETPEMVKLKMDHHRDYFNLQS 750
751 LYFNLLYDESSEETQLACVEVIRRILGHTSPDILVRTRSQWIRCLQYLLV 800
801 HVNTDVREAFCAQIGIFVQHPIVSCLFLSEDATEKSCERNFFNLIEHSLA 850
851 AAKDLLVIQTLLETTAEVMVAVDVTSELFLICLFLLIDQLDHPNLIVRIN 900
901 ASKLINRSCYIHVKGGFATLLSTASHIQNELFDNLSVRLTSRPNVVREFA 950
951 EAVLGVETEELVRKMVPAVLPKLLVYWQENAQAANTLNELAKLIDTDVVP 1000
1001 LIVNWLPRVLAFALNQEEDKNLLSVLQLYHSQIGSDNQEIFAAALPALLD 1050
1051 ELVCFVDIADTPETDRRLQRLPDAIKKISKVLTNAEDLPGFLQNHFVGLL 1100
1101 NSIDRKMLHADDIFLQKQALKRIKLLIEMMGHYLSTYVPKLMVLLMHAIE 1150
1151 KDALQSEGLLVLHFFTRKLADVSPSSIKYVISQIFAALIPFLEKEKEGPH 1200
1201 VYLDEVVKILEELVLKNRDIVKEHICEFPLLPSIPSLGELNNAIQEARGL 1250
1251 MSLKDQLRDIVNGMKHENLNVRYMVACELSKLLYNRNEDVAALIAGELVS 1300
1301 DMEILSSLITYLLQGCAEESRTTVGQRLKLVCADCLGAIGAIDPAKVRVA 1350
1351 SCSRFKIQCSDDDLIFELIHKHLARAFRAAQDTIIQDSAALAIQELLKIA 1400
1401 GCEPSLAGNVVVLTPQEHVQVNVSGSRRCGGNNEVKDRGQKLWDRFSNYV 1450
1451 KELIAPCLTSRFQLPNVSDPGSAGPIYRPSMSFRRWLSYWIRKLTAFATG 1500
1501 SRVSIFAACRGIVRHDMQTATYLLPYLVLDVVCHGTEAARLSISEEILSV 1550
1551 LDAAASENSGVTINSFGVGQSEVCVQAVFTLLDNLGQWVDDVKQGVALSS 1600
1601 SLQSSGGRQVAPKSKDQVSNSTTEQDHLLVQCKYVLELLLAIPKVTLARA 1650
1651 SFRCQAYARSLMYLESHVRGKSGSLNPAAEKTGIFENADVSSLMGIYSCL 1700
1701 DEPDGLSGFASLSKSLNLQDQLLINKKSGNWADVFTACEQALQMEPTSVQ 1750
1751 RHSDVLNCLLNMCHHQTMVTHVDGLISRVPEYKKTWCTQGVQAAWRLGKW 1800
1801 DLMDEYLDGADAEGLLFSSSDSNASFDRDVAKILHAMMKKDQYSVAEGIA 1850
1851 ISKQALIAPLAAAGMDSYTRAYPFVVKLHLLRELEDFQAVLNGDSYLEKS 1900
1901 FSTSDQVFSKAVDNWENRLRFTQSSLWTREPLLAFRRLVFGASGLGAQVG 1950
1951 NCWLQYAKLCRLAGHYETAHRAILEAQASGAPNVHMEKAKLLWITKRSDS 2000
2001 AIIELQQSLLNMPEGVVDSTVISSINSLLMAPPNPEPTVRNTQSFKEKKD 2050
2051 VAKTLLLYSKWIHHSGQKQKKDVLNLYTQVKELLPWEKGYFHLAKYYDEL 2100
2101 YVDARKCQQESSVFSSAGSKKGSVSSNLSTEKAGWDYLFKGMYFYAKALH 2150
2151 SGHKNLFQALPRLLTLWFDFGTIYKTSGSAGNKELKSTHMKIMSLMRGCL 2200
2201 KDLPTYQWLTVLPQLVSRICHQNADTVLMVKNIITSVLHQFPQQGLWIMA 2250
2251 AVSKSTVPARREAAAEIIQGARKGFNQSDRGHNLFIQFASLTDHFIKLCF 2300
2301 HGGQPRSKVINIATEFSALKRMMPLDIIMPIQQSLTISLPAFHMNNNERH 2350
2351 SASVFSGSDLPTISGIADEAEILSSLQRPKKIILLGNDGIEYPFLCKPKD 2400
2401 DLRKDARMMEFTAMINRLLSKYPESRRRKLYIRTFAVAPLTEDCGLVEWV 2450
2451 PHTRGLRHILQDIYISCGKFDRQKTNPQIKRIYDQCAVKKEYEMLKTKIL 2500
2501 PMFPPVFHKWFLTTFSEPAAWFRSRVAYAHTTAVWSMVGHIVGLGDRHGE 2550
2551 NILFDSTSGDCVHVDFSCLFDKGLQLEKPELVPFRLTQNMIDGLGITGYE 2600
2601 GIFMRVCEITLTVLRTHRETLMSILETFIHDPLVEWTKSHKSSGVEVQNP 2650
2651 HAQRAISSIEARLQGVVVGVPLPVEGQARRLIADAVSLENLGKMYIWWMP 2700
2701 WF 2702
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.