SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9FL92 from www.uniprot.org...

The NucPred score for your sequence is 0.78 (see score help below)

   1  MTESEQIVYISCIEEVRYSFVSHLSKALQRKGVNDVFIDSDDSLSNESQS    50
51 MVERARVSVMILPGNRTVSLDKLVKVLDCQKNKDQVVVPVLYGVRSSETE 100
101 WLSALDSKGFSSVHHSRKECSDSQLVKETVRDVYEKLFYMERIGIYSKLL 150
151 EIEKMINKQPLDIRCVGIWGMPGIGKTTLAKAVFDQMSGEFDAHCFIEDY 200
201 TKAIQEKGVYCLLEEQFLKENAGASGTVTKLSLLRDRLNNKRVLVVLDDV 250
251 RSPLVVESFLGGFDWFGPKSLIIITSKDKSVFRLCRVNQIYEVQGLNEKE 300
301 ALQLFSLCASIDDMAEQNLHEVSMKVIKYANGHPLALNLYGRELMGKKRP 350
351 PEMEIAFLKLKECPPAIFVDAIKSSYDTLNDREKNIFLDIACFFQGENVD 400
401 YVMQLLEGCGFFPHVGIDVLVEKSLVTISENRVRMHNLIQDVGRQIINRE 450
451 TRQTKRRSRLWEPCSIKYLLEDKEQNENEEQKTTFERAQVPEEIEGMFLD 500
501 TSNLSFDIKHVAFDNMLNLRLFKIYSSNPEVHHVNNFLKGSLSSLPNVLR 550
551 LLHWENYPLQFLPQNFDPIHLVEINMPYSQLKKLWGGTKDLEMLKTIRLC 600
601 HSQQLVDIDDLLKAQNLEVVDLQGCTRLQSFPATGQLLHLRVVNLSGCTE 650
651 IKSFPEIPPNIETLNLQGTGIIELPLSIVKPNYRELLNLLAEIPGLSGVS 700
701 NLEQSDLKPLTSLMKISTSYQNPGKLSCLELNDCSRLRSLPNMVNLELLK 750
751 ALDLSGCSELETIQGFPRNLKELYLVGTAVRQVPQLPQSLEFFNAHGCVS 800
801 LKSIRLDFKKLPVHYTFSNCFDLSPQVVNDFLVQAMANVIAKHIPRERHV 850
851 TGFSQKTVQRSSRDSQQELNKTLAFSFCAPSHANQNSKLDLQPGSSSMTR 900
901 LDPSWRNTLVGFAMLVQVAFSEGYCDDTDFGISCVCKWKNKEGHSHRREI 950
951 NLHCWALGKAVERDHTFVFFDVNMRPDTDEGNDPDIWADLVVFEFFPVNK 1000
1001 QRKPLNDSCTVTRCGVRLITAVNCNTSIENISPVLSLDPMEVSGNEDEEV 1050
1051 LRVRYAGLQEIYKALFLYIAGLFNDEDVGLVAPLIANIIDMDVSYGLKVL 1100
1101 AYRSLIRVSSNGEIVMHYLLRQMGKEILHTESKKTDKLVDNIQSSMIATK 1150
1151 EIEITRSKSRRKNNKEKRVVCVVDRGSRSSDLWVWRKYGQKPIKSSPYPR 1200
1201 SYYRCASSKGCFARKQVERSRTDPNVSVITYISEHNHPFPTLRNTLAGST 1250
1251 RSSSSKCSDVTTSASSTVSQDKEGPDKSHLPSSPASPPYAAMVVKEEDME 1300
1301 QWDNMEFDVDVEEDTFIPELFPEDTFADMDKLEENSQTMFLSRRSSGGNM 1350
1351 EAQGKNSSDDREVNLPSKILNR 1372

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.