 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9HDV4 from www.uniprot.org...
The NucPred score for your sequence is 0.94 (see score help below)
1 MICQLLWHEHNSMGSGREKKIRKLGDNFSLPYLKFDCDHNDKNYRASNRP 50
51 FGLSTGLSVQLNASNMTDPFKFLLDNWHTIFKNGAIKLLPPEGWQIPVVL 100
101 DQGAFEFQSKRQCLNKGCLNYEKNYDYFKKLKAFHESRGLYFYHPPIIGN 150
151 RPVDFLRLRNAISKFTNSGSSLNNEILHKVIIYLRLEDTKEVRQVLTRCY 200
201 DRYIKPFERDSSPSFKSKRSESSTRKIRNTRSSAQQESPIPETSAQSPVQ 250
251 TIQVNGSTSLKRPLIERGEQCEYCGLDKNPETILLCDGCEAAYHTSCLDP 300
301 PLTSIPKEDWYCDACKFNISDYDPRKGFKWKLSSLKERSAEIFNTLGERN 350
351 SSSKLTNLTEDDIELFYWSSLAESNSGFAPLELEGLSQAYTSTIQSSLPS 400
401 KEVFPLEKYSSEPWNLHNLPFENPCLFNYSFSDLSSLTITRLSIGMVFYT 450
451 HGWTKSSLSTGLLHHHRFGDTVTWYVLPPDESDAFERYLISSYPQYTMED 500
501 LNRSNGLPVIVSPSSLIENGFHPIAIDLRPNEFLVVSPNSYHMGFHQGFS 550
551 SFESVNFATVNWIKDGLLNSSISVLKSMRIPSSVSYEAVIISMVLSKNPC 600
601 FSSEWLIKCFEDMIANESASKNEIMKLVPNIQALKLESSVPLEIRCSNCK 650
651 QPCFLSFMQCHEPKKFICLGDCVKEVSLNATSWMLFYRWDVHELSNLAER 700
701 FVSLIRGPEEWTNRLRSVLSTSPKPQLKVLKSLLVDAEKAMLTTPETVNL 750
751 RDFVQNANSWIDSVNECLKVASLKRKKDKKPPLFKAHDHWNNTSNLKDSA 800
801 VLFKVLQTSRSMAFTCQEIENMKQKAFDLLEFRNRLINSFSGPLDKNTCQ 850
851 RLLTEAELLGFTIPELGIIQKYLIQFEWLDMFYSFETTRTTDSDLERLIT 900
901 YGVSAGIPEDNDYMIFAKAMKGRAEIWENQVYDTLSKSNISYDKLSLLRD 950
951 EAMNLCVNKELFSKVVGILNNAEEIKNKIATLCERSQEKDFALRPSIDEV 1000
1001 KEALASAEKLPILSESTVTLQKMYDVVLEWIRRGKRLFGKANAPLEILGQ 1050
1051 HLDYVEKRNSASLSLNDRPGPPMEPASRETSPDSEGRLTIRKKKGCIFCF 1100
1101 CRLPESGVMIECEICHEWYHAKCLKMSKKKLRQDEKFTCPICDYRVEIPR 1150
1151 LSNRPKLEDLQSLYKDVKLLPFQPKETETLRKVVDLASKFRQEMQALAHN 1200
1201 PFGLTMAEVPLARFYLRKMEGAEILLVDETNLFRQKLHECVPIAPNPPPI 1250
1251 IGESKSTRKPRPTKRQRQIMKQVAEGLLPASAIAPPKSSNEKKSSNNVKA 1300
1301 VEAETKSKSEKSPKKNGTNISDANNKNESHVSLMKNWKLGSPAFVTLVKE 1350
1351 KNSSCLCGEEFSPRDSFIDCTICERRFHYDCVGLNNEIADSVSKFTCPIC 1400
1401 MEQSGGIYPWQLRPRNGMHPDHISGFSKEVETDPKLGSSGYTLNNSKFDK 1450
1451 AAVSKTLSAQDVSRLQKVSCGEHLYFGTDVFTPLGDMATSASMFSLDDSS 1500
1501 EKTDAFTENFLNV 1513
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.