SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9HF61 from www.uniprot.org...

The NucPred score for your sequence is 0.90 (see score help below)

   1  MLTAKQDEVGRELRVATGTSLIEYPVKDWLLRRQPTEWEALLGEAAIFSG    50
51 QDELLWGPFVACVYREPRTTRLNCLFMDRIGVMHLHSVDVSDTSRFYPAV 100
101 ENLRPEYRTQVVRRCLAVGLLKKYVLLDPSAVRLIRAELPYDYDQTTAGD 150
151 LANTCELVEGQAARDVGQLLVRLGLVQPRHVRSLMLDVVYENHADVVDAN 200
201 NKLVYYLGEQLEQLFDPLTEYSPEPTELSYRVPDQVRTSLSDEMPLMVSI 250
251 CEELLQLQTNFTLSLVGFLQKFLIPLRIKALNEQVPGLSTVKLNNIFPPT 300
301 IDEVTRINCIFLDALKAALPYGSLEVLKACSITAPYFYKAYTRHEAATKF 350
351 FSRDIKSFLSTFGKSLSDLNFYSEIKLDTLIHGPQEKLTKLKLIIDRLFD 400
401 SKDWETNEEQKEADRCYRSICDVIDSFGKDEPPNTYDTRVFTPSGKILTE 450
451 LAKGWPAELQYKWLKRRVVGVFDVISVTDPESRDIVVIFSDYIVFLHVIN 500
501 GNLYYSGDSKKPLISDVLMNSLINEVPLPPKIPKLEVLSHSYIDDVVVST 550
551 YGKNSLRFDTLNAERPSSVAYTLASSSVEASYVADLCTKARILEKDTAFH 600
601 LFKTAIDSFHVYSTAHESEAYKTERIKSPFVLFLNIPDSIGALQDHNATV 650
651 GLFASLNKNDKVTLVRLGLDGSREESFASLDNFLSLIIEELLIFYPSYLS 700
701 SATSPLFQQLMQINEQLVQTLLDPKGVHSASKSKCALRTSKKKKMPANLV 750
751 STNDNSRTLSPGTIISRTPRTISTITPKQEKRKSVGQASNSPARGSISTT 800
801 PRKHKRESILGKISGLFHKKDKKENKRNSVGSDTRNRHDNGSVHILRNSS 850
851 SSFRELESPRQMKRFSSVVHTAVPSSSKRRTSGISPSKGTVNLRALQDAE 900
901 NDDNADISKIPIPEGESLFDDTIRVDGVDADFYAQKDRLSKIYNHDLYGE 950
951 VVPSAPGSKNVNVVSGATREQEKQQNTQKAIARELLASVDQQKRQPTHSA 1000
1001 PAESQIVIPGLPQSNVPQINFGRSPSFIELFGGMRLVLDENDESVNWRRL 1050
1051 CSERSLNEKYQIRPATYAGCISGELAPPVGIISDQRDSNLSGDNDADTPL 1100
1101 PMHSSNKSILSDETLEKGEFERDFAISTPKSQTVSDVNARRETWGYSHSH 1150
1151 DEEIDSEKRANTKPVSAPAPNVIPGLIITANSPTKPWHKENTRIKVSDVR 1200
1201 SEGTDVSYISSLKKSSNRLVELSVNSQEDFEDERHTPVIEPIQNPEAPSL 1250
1251 IENTETAPVASNSSNEETLSKLLGSQGVIDLTEETIDYSSINRKHASIQT 1300
1301 AYPVLDDVEFSTFHMSFGDMKAEDSHLANQRESYLFSNSTIAGKKDESHG 1350
1351 PVFYKLPDFVADDSYLGYSAVDQHAKHERNTEIGEEDEAMWVSPSKLDIF 1400
1401 DLSKQPESVYKRTSIPAKHAELLSKMRKDGSVKFEESMFIRDNSYVYLGQ 1450
1451 FLSADEVIEQQDKKLAANTDEMDSARRL 1478

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.