 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9HG03 from www.uniprot.org...
The NucPred score for your sequence is 0.66 (see score help below)
1 MDFEQYGQSSQQPRQRRRRAGKRRLNNKTPIAARLALDPQLRGKVGILSE 50
51 DLANDLFQQQALQDVTTSDDGVLYVAIAPHTPTYTSVEDQAWTILPVRIQ 100
101 PTERSPVAMSHSTVLFPESADSLQPFLQALGKVDSSRNSLQAHRSVEIRI 150
151 LDVAPIHLDTIFVTVERHLLRNHDDVQTKFGGGFTNAQGPNGLWGKTGKS 200
201 VEAKKYSKRAAADAEQRLTAAVREALGAQRIVHTGDVLPLPLPSHPITYA 250
251 PPPPARISFCEPVSQGLLMSTTKIVLVQARPQGIRAQQTMPSRSALLKQV 300
301 AEDEADDTSNEQFYSAAEDKPGESGTEMEVTSAAEESETEGSAGSMSDSS 350
351 DDSLEDMISLSAPELPQPPSGVMSSLTSATPRAGGRRSDGIHTPGSVASN 400
401 FTSATMRPGRGGGKTFKVEGLLQQVPNEVLHPRPRDDEDVDSFVFVDIST 450
451 LAKIGCFSGDWVRIEAAEEPQLNMFASLKFGSFNDSPEDSGDWRPVKIFG 500
501 LSGLPSSKPRYAINHSGERRPSISQRPPTRLTPSVFVPPLLLGNIENPKY 550
551 LRISPMTFATPNGSSKPGILQHMKNTAAKNPPLAKEVTLLKVSTPLSMDR 600
601 VLQPALFAGLKQYFESRRRILKSGDLVGISVDEGLGRAVFSGTGSGDSAS 650
651 QEEDITIRLGQGANATNAGTRKIGVAWFRVGQVAPTTVEELEETGEDQWG 700
701 GVAVLDPATTRMVQAGSDVSRVPGVLGNGWEYWLGVKTIPKTVHDAPTPH 750
751 GIVADPPQSVIPPLQQRIRDLMSAATSPRAIQLGMKPVFILLRSQQRHIG 800
801 KATVATRACSDIGIHTFPIDAYDILTEGGANGGDVKTEAYLKARAERAFH 850
851 CGANCTALLIRHIEVLTADRIVTAMSDILNDARVVIATTTDVETIPEGIR 900
901 SLITHEFEMGAPEEKEREGILQNAVTERGIRLSADVDLGSIALKTAALVA 950
951 GDLVDVVERAAGARTARLESLAEASKKISGSEVFVRDVLLAGGDGARGVT 1000
1001 KADFDAAVEAARKNFADSIGAPKIPNVGWDDVGGLTNVKDALVETIQLPL 1050
1051 ERPELFAKGMKKRSGILFYGPPGTGKTLLAKAIATEFSLNFFSVKGPELL 1100
1101 NMYIGESEANVRRVFQRARDARPCVVFFDELDSVAPKRGNQGDSGGVMDR 1150
1151 IVSQLLAELDGMNGGEENSGGVFVIGATNRPDLLDTALLRPGRFDKMLYL 1200
1201 GVSDTHRKQATILEALTRKFALHPDVSLDRVAEQLPLTYTGADLYALCSD 1250
1251 AMLKAITRKATAVDEKINALPNGPVSTAWFFDHLATKEDVNVMVTEEDFL 1300
1301 SAQGELVPSVSAKELEHFERIRQTFEAVDKSKQDPAAAAPQTIAEAMEAF 1350
1351 SLGGSAIPEEAPTINGDSLTPGGIHGRIKGLNRWPGNPVRSTSGQSTTSS 1400
1401 KGKGKSVSKKGKSRTGAESDGSVDGDDEDMADANSKEDEDEDDYVVRTDH 1450
1451 LRNPMEEVE 1459
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.