 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9JME5 from www.uniprot.org...
The NucPred score for your sequence is 0.83 (see score help below)
1 MSAAPAYSEDKGGSAGPGEPEYGHDPASGGIFSSDYKRHDDLKEMLDTNK 50
51 DSLKLEAMKRIVAMIARGKNASDLFPAVVKNVACKNIEVKKLVYVYLVRY 100
101 AEEQQDLALLSISTFQRGLKDPNQLIRASALRVLSSIRVPIIVPIMMLAI 150
151 KEAASDMSPYVRKTAAHAIPKLYSLDSDQKDQLIEVIEKLLADKTTLVAG 200
201 SVVMAFEEVCPERIDLIHKNYRKLCNLLIDVEEWGQVVIISMLTRYARTQ 250
251 FLSPTQNESLLEENPEKAFYGSEEDEAKGPGSEEAATAALPARKPYVMDP 300
301 DHRLLLRNTKPLLQSRSAAVVMAVAQLYFHLAPKAEVGVIAKALVRLLRS 350
351 HSEVQYVVLQNVATMSIKRRGMFEPYLKSFYIRSTDPTQIKILKLEVLTN 400
401 LANETNIPTVLREFQTYIRSMDKDFVAATIQAIGRCATNIGRVRDTCLNG 450
451 LVQLLSNRDELVVAESVVVIKKLLQMQPAQHGEIIKHLAKLTDNIQVPMA 500
501 RASILWLIGEYCEHVPKIAPDVLRKMAKSFTAEEDIVKLQVINLAAKLYL 550
551 TNSKQTKLLTQYVLSLAKYDQNYDIRDRARFTRQLIVPSEQGGALSRHAK 600
601 KLFLAPKPAPILESSFKDRDHFQLGSLSHLLNAKATGYQELPDWPEEAPD 650
651 PSVRNVEVPEWTKCSNREKRKEKEKPFYSDSEGESGPTESADSEPESESE 700
701 SESKSSSGSGSGESSSESDNEEEDEEKGGGSESEQSEEEDEKKKKTKKKK 750
751 ASEGHREGSSSEEGSDSSSSSESEVTSESEEEQVEPASWRKKTPPGSKSA 800
801 PVAKEISLLDLEDFTPPSVQPVSPPMVVSTSLAADLEGLTLTDSSLVPSL 850
851 LSPVSSIGRQELLHRVAGEGLSVDYAFSRQPFSGDPHMVSLHIYFSNNSE 900
901 TPIKGLHVGTPKLPAGISIQEFPEIESLAPGESTTTVMGINFCDSTQAAN 950
951 FQLCTQTRQFYVSIQPPVGELMAPVFMSENEFKKEQGKLTGMNEITEKLT 1000
1001 LPDTCRSDHMVVQKVTATANLGRVPCGTSDEYRFAGRTLTSGSLVLLTLD 1050
1051 ARAAGAAQLTVNSEKMVIGTMLVKDVIQALTQ 1082
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.