SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9LRR5 from www.uniprot.org...

The NucPred score for your sequence is 0.74 (see score help below)

   1  MANSYLSSCANVMVERINTSQELVELCKGKSSSALLKRLKVALVTANPVL    50
51 ADADQRAEHVREVKHWLTGIKDAFFQAEDILDELQTEALRRRVVAEAGGL 100
101 GGLFQNLMAGREAIQKKIEPKMEKVVRLLEHHVKHIEVIGLKEYSETREP 150
151 QWRQASRSRPDDLPQGRLVGRVEDKLALVNLLLSDDEISIGKPAVISVVG 200
201 MPGVGKTTLTEIVFNDYRVTEHFEVKMWISAGINFNVFTVTKAVLQDITS 250
251 SAVNTEDLPSLQIQLKKTLSGKRFLLVLDDFWSESDSEWESFQVAFTDAE 300
301 EGSKIVLTTRSEIVSTVAKAEKIYQMKLMTNEECWELISRFAFGNISVGS 350
351 INQELEGIGKRIAEQCKGLPLAARAIASHLRSKPNPDDWYAVSKNFSSYT 400
401 NSILPVLKLSYDSLPPQLKRCFALCSIFPKGHVFDREELVLLWMAIDLLY 450
451 QPRSSRRLEDIGNDYLGDLVAQSFFQRLDITMTSFVMHDLMNDLAKAVSG 500
501 DFCFRLEDDNIPEIPSTTRHFSFSRSQCDASVAFRSICGAEFLRTILPFN 550
551 SPTSLESLQLTEKVLNPLLNALSGLRILSLSHYQITNLPKSLKGLKLLRY 600
601 LDLSSTKIKELPEFVCTLCNLQTLLLSNCRDLTSLPKSIAELINLRLLDL 650
651 VGTPLVEMPPGIKKLRSLQKLSNFVIGRLSGAGLHELKELSHLRGTLRIS 700
701 ELQNVAFASEAKDAGLKRKPFLDGLILKWTVKGSGFVPGSFNALACDQKE 750
751 VLRMLEPHPHLKTFCIESYQGGAFPKWLGDSSFFGITSVTLSSCNLCISL 800
801 PPVGQLPSLKYLSIEKFNILQKVGLDFFFGENNSRGVPFQSLQILKFYGM 850
851 PRWDEWICPELEDGIFPCLQKLIIQRCPSLRKKFPEGLPSSTEVTISDCP 900
901 LRAVSGGENSFRRSLTNIPESPASIPSMSRRELSSPTGNPKSDASTSAQP 950
951 GFASSSQSNDDNEVTSTSSLSSLPKDRQTEDFDQYETQLGSLPQQFEEPA 1000
1001 VISARYSGYISDIPSTLSPYMSRTSLVPDPKNEGSILPGSSSYQYHQYGI 1050
1051 KSSVPSPRSSEAIKPSQYDDDETDMEYLKVTDISHLMELPQNLQSLHIDS 1100
1101 CDGLTSLPENLTESYPNLHELLIIACHSLESFPGSHPPTTLKTLYIRDCK 1150
1151 KLNFTESLQPTRSYSQLEYLFIGSSCSNLVNFPLSLFPKLRSLSIRDCES 1200
1201 FKTFSIHAGLGDDRIALESLEIRDCPNLETFPQGGLPTPKLSSMLLSNCK 1250
1251 KLQALPEKLFGLTSLLSLFIIKCPEIETIPGGGFPSNLRTLCISLCDKLT 1300
1301 PRIEWGLRDLENLRNLEIDGGNEDIESFPEEGLLPKSVFSLRISRFENLK 1350
1351 TLNRKGFHDTKAIETMEISGCDKLQISIDEDLPPLSCLRISSCSLLTETF 1400
1401 AEVETEFFKVLNIPYVEIDGEIFS 1424

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.