SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9M3G7 from www.uniprot.org...

The NucPred score for your sequence is 0.89 (see score help below)

   1  MKLQNPDKKTLREGFSQESSVVALDSGVLAMSGLKCDGKFPVKDVLMEEG    50
51 GDKVRKIQVSGGNISLVVDFSGARTSSNNFFESNASCVNENLVKGNGYRE 100
101 DETQEFLVGNLVWVMTKYKKWWPGEVVDFKADAKESFMVRSIGQSHLVSW 150
151 FASSKLKPFKESFEQVLNQRNDNGFFDALQKAMSLLSNSLKLDMTCSCIA 200
201 DGNGIVSAQNITTRKNKPLILREFSVDRLEPKEFVTQLKNIAKCVLNAGV 250
251 LESTVMQSQLSAFYTLFGHKQIPMAQLHENEGRKSFTAKMSDSKFIGSPS 300
301 ICAGNSRKRFRKEWFRKFVSEVDNVSARDDLVNVPPSDLISKLKLLAVGY 350
351 NCSEETENIGLFEWFFSKFRISVYHDENAYKMQLANMAGFKDLMLATNAN 400
401 RGTVQKTLKSKKIGKSKMEPLNGVSVADTEQKTFELQISKKSNIESLNGV 450
451 SVADTEQKTFELQILEKSNIESLNGVSTPNIDHEASKSNNSGKTKINHII 500
501 GHSNFPSSVAKVQLAKDFQDKLLVQAPDRKAMTADTLSRPAAILVPDLNS 550
551 GGNALGTAEFDHMQRPETLIQHNVCPQEEKTPRSTILNFQVTAHQGVSGT 600
601 QFVSSQPTSYKHFTSADLFTYSGKKKRGRKRKNAEELPIVAHASATTGIP 650
651 DLNGTNTEPTLVLPQVEPTQRRRRRKKEESPNGLTRGITILFLKFSSQVS 700
701 MPSRDDLTSTFSAFGPLDSSETHVSEEFSGAQVAFVSSADAIEAVKSLEK 750
751 ANPFGETLVNFRLQQKLITVQRNIAPRMPVISHVSPVPKPNNIPTSMDAM 800
801 RQNLLMMTAMLEKSGDSLSRETKAKLKSEITGLLEKDGVKLLNTWLEGER 850
851 SITFCRFLSQNTAKLKLDEIPNAETWPFLVKLLLQCVSMEVSGSKRRMPK 900
901 PTFAKTLRVVVQRTEETKFPGVQFPLLSMAKTLFTHVHDILSNTPSFQSE 950
951 YGTILRHLLEIKEYRFQMRKRTYSSLVLLYMERAETGFCEKNSGQHSQKE 1000
1001 EAFRYILTLQSLLENSPGDFPDDLREEIVNGLIHIFSSVRDEGKLSRKLI 1050
1051 ECVNTFLLKDGPNLGSLSLEIHNAVEQFVFRCWLTTHDKNLKEILVSYGR 1100
1101 LQLNLTRDSSESSSLVEQLLDVVTRELDLGSSSSSASWGDTTKDEKLGAL 1150
1151 SSYQNSLVELAAHVFYRACVNTSRPSLSEKRARRQHIAMRMVDALTEGKW 1200
1201 LWCAAFGCLVRNYCARINMDLLIYWFEAICTNFQRLLEDASMRRSYDGLL 1250
1251 WTLRSLQGLSSGLSLPDITMDISKSSASSSELDRGWQSIWSSLIHGLATF 1300
1301 SSMSVIVDAVLVLLGSIISSNHITVKILPQEVWDHQLFRHIPSEPALYFI 1350
1351 ACYFSRMGCQGNLQDDLHLRRNLLRAVCAPLSWKVRLTLDERMVQLLPAA 1400
1401 AFSLCAGFKVSLPLPKEHLPTPSQWDVCEQIDDVDRERNFGLFECSVEAL 1450
1451 TRICSNSSKISGCQVPDVVQLPLVLRDPLLHDMDIYFLSIIPEVKEKGPL 1500
1501 SDIFMGCALLCHFMHGSYITRKGKGSSSFFLKACQYLLEGLDHAVESVSK 1550
1551 SLNDLQRRGSLGFGSDFNEKGSIIVSLRSFTQSPVFSNRRDQNLLGASYD 1600
1601 FVIHSLENLLRSFAKVYEEYTEHAWNTHSDTVPSKSLAPDSPEVGRIVDM 1650
1651 DLDLAEDTKERDIIAAGGKAVPGLPVSMGNWKLGMVSLISCFSPVLQFPT 1700
1701 WDVLYNLLEKESDPKVLENILYHLCKLSCLTSIPKVDDLVIFLDGMLSTQ 1750
1751 VKMKRNCLNIVTALHVLLHTLSSSRRDSSGVEKNCGLSLKEAESFQVFVQ 1800
1801 LGAMVNKVSEFGLLGWFGRVKLINCICDLVLLNPQTGQTMIERLLLMLSD 1850
1851 SDYRVRFVLARQIGILFQTWDGHEALFQDICSSFGIKLVTSSKEKLVTAK 1900
1901 DVLAVGPQPRQKMETVIITLMHLAYHSENIELQAVFMMCAVSAKDPCQRE 1950
1951 LIIAALDNLSAQLHYPSRFKYLEELLGPILFHWIASGVSLAGLIETSQLF 2000
2001 IPNAEPKYFIHFCSHWLLPALLLHEDHTNLDWVAKMAGQPVVVLVKENFV 2050
2051 PIFSICMGLHCSKTSECDKGAMVLQNSILYVGETSENERDKLIKQNMVSI 2100
2101 VSFILSCASSSPEPPVPTFSRDTISLAVQTVVDGFLENTDYPKNAAITDR 2150
2151 INIFRPDRVFMFITEMHYRMSAACHHRHTRHHLAALEELTILLGHRALVP 2200
2201 SSLNYIFNLVGQFIGYPSLQDQCCSIASCLLDLFKSNPAKEIVSVLGDQL 2250
2251 QFLVSKLVTCCIDAEADTKISGAKSSQLVNLLHKLVVSSDSSLNEDIRDL 2300
2301 EPLPDLKYFQVIRESHIRICEAYSPRNHLLKVEHSTFLIYIFLEILSLSN 2350
2351 FLFLSCSTIQQCSRRSNYLPPRFLSRSLQALHNKLIASEVSQEDTNGETA 2400
2401 ETFWQSDDEIVNAVWTLVRVSASDEADSMRLLVSDFLSRIGIRDPHTVVF 2450
2451 HLPGNLVSMHGLQGFGHNTGSKVRSLTENGISDETLITLLNFLKKYLLDD 2500
2501 SVKIIDVTSQTLRGILSTERGQQALSSFDSCERALIEVHGRGVNLDIVEK 2550
2551 ILLDSQKQFKAEKFSLETPEVWSTDNKNFDRWICQLVYCMIALCEDVPIR 2600
2601 LCQNIALLKAEISELLFPSVVVSLAGRIGMDINLHDLITSQVKEHIFTDS 2650
2651 NKLTKSKQVMLNTLNELRMCYVLERSIFSGQTKREKNSRSCSTAAKIRDV 2700
2701 ESGSNGMAASITTNWEKVYWLSIDYLVVAGSAVVCGAYLTASMYVEYWCE 2750
2751 EKFGNLSLGDPDFSYHDKLPDHVEILVSAITRINEPDSLYGVIHSNKLSA 2800
2801 QIITFEHEGNWTRALEYYDLQARSQKMVVPSSLSENLEVEQFQPTTSARH 2850
2851 SVFGEGEVQRQPFKGLIRSLQQTGCMHVLDLYCRGLTSREGCFQYDPEFI 2900
2901 ELQYEAAWRAGKWDFSLLYPQTHCQPLQHAKNNNYHESLHCCLRALQEGD 2950
2951 YDGFYGKLKDTKKELVLSISRASEESTEFIYSTVVKLQILHHLGLVWDLR 3000
3001 WTTSSHQSVHGYLVKQMACVDPVIPTMDQLSWLNKDWNSIITQTQLHMTL 3050
3051 LEPFIAFRRVLLQILGCEKCTMQHLLQSASLLRKGTRFSHAAASLHEFKF 3100
3101 LCARSNGQQPVPDWLGKLEEAKLLHAQGRHEVSISLANYILHNYQLKEEA 3150
3151 SDIYRVIGKWLAETRSSNSRTILEKYLRPAVSLAEEQSSKICKRLVDRQS 3200
3201 QTWFHLAHYADALFKSYEERLSSSEWQAALRLRKHKTKELEVFIKRFKSS 3250
3251 KKAEQSDYSLKIQDLQKQLTMDKEEAEKLQVDRDNFLKLALEGYKRCLEI 3300
3301 GDKYDVRVVFRQVSMWFSLASQKNVIDNMLSTIKEVQSYKFIPLVYQIAS 3350
3351 RLGSSKDESGSNSFQSALVSLIRKMAIDHPYHTILQLLALANGDRIKDNQ 3400
3401 RSRNSFVVDMDKKLAAEHLLQDVSHYHGPMIRQMKQLVDIYIKLAELETR 3450
3451 REDTNRKVALPREIRSVKQLELVPVVTATIPVDRSCQYNEGSFPFFRGLS 3500
3501 DSVTVMNGINAPKVVECFGSDGQKYKQLAKSGNDDLRQDAVMEQFFGLVN 3550
3551 TFLHNNRDTWKRRLAVRTYKVIPFTPSAGVLEWVDGTIPLGDYLIGSSRS 3600
3601 EGAHGRYGIGNWKYPKCREHMSSAKDKRKAFVDVCTNFRPVMHYFFLEKF 3650
3651 LQPADWFVKRLAYTRSVAASSMVGYIVGLGDRHAMNILIDQATAEVVHID 3700
3701 LGVAFEQGLMLKTPERVPFRLTRDIIDGMGITGVEGVFRRCCEETLSVMR 3750
3751 TNKEALLTIVEVFIHDPLYKWALSPLKALQRQKETEDYDGMNLEGLQEEF 3800
3801 EGNKDATRALMRVKQKLDGYEGGEMRSIHGQAQQLIQDAIDTDRLSHMFP 3850
3851 GWGAWM 3856

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.